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RESUMO 

 

Isolamento e caraterização molecular do gene fatty acid synthase num porco obeso 

 

 O porco Alentejano é uma raça autóctone do sul de Portugal geneticamente 

idêntica ao porco Ibérico. Esta raça obesa é caraterizada por um crescimento lento e uma 

capacidade adipogénica precoce e elevada. A formação do tecido adiposo em suínos é 

obtida em 80% via síntese de novo, apesar de também poder ocorrer síntese independente 

de ácidos gordos intramusculares. O porco Alentejano apresenta a característica genótipo 

“poupador” (thrifty genotype), responsável pelo elevado potencial e maior capacidade de 

deposição de tecido adiposo que outras raças comerciais magras. 

 O objetivo deste estudo foi determinar a sequência genética do enzima lipogénico 

fatty acid synthase (FAS) do tecido adiposo subcutâneo de um porco obeso de raça 

Alentejana. De acordo com a pesquisa feita, esta é a primeira publicação de uma 

sequência parcial deste gene em porcos Alentejanos. Através da clonagem de produtos de 

PCR, foram detetados três polimorfismos: c.6361C>T, c.6632C>A e c.6693C>T., sendo 

que os últimos dois conduzem a alterações no resíduo traduzido. 

 

Palavras chave: Suíno; raça Alentejana; fatty acid synthase; ácidos gordos; lipogénese; 

deposição; adipócito; síntese de novo; gordura intramuscular; sequenciação. 
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ABSTRACT 

 

 The Alentejano (AL) pig is an autochthonous breed genetically similar to the 

Iberian pig. This obese breed is characterized by slow growth rates and precociously high 

lipogenic activity. De novo synthesis is responsible for about 80% of all fatty acid (FA) 

synthesis in swine adipose tissue, although independent intramuscular FA synthesis can 

also occur. The AL breed features the thrifty genotype, responsible for a higher potential 

and ability for fat deposition than other industrial lean breeds.  

 The aim of this study is to determine the gene sequence of the porcine fatty acid 

synthase (FAS) lipogenic enzyme of an obese AL pig in subcutaneous adipose tissue. To 

our knowledge this is the first publication of a partial sequence of this gene in AL pigs. 

Through cloning of polymerase chain reaction (PCR) assayed products three 

polymorphisms were detected: c.6361C>T, c.6632C>A and c.6693C>T, the latter two 

change the translated residue. 

 

Key Words: Swine; Alentejano breed; lipogenesis; deposition; adipocyte; de novo 

synthesis; intramuscular fat; Fatty acid synthase; sequencing
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I. INTRODUCTION 

 

 Sus scrofa domesticus, commonly known as domestic pig, is a eutherian mammal 

that has shared a natural bond with humans since the beginning of its domestication all 

across Eurasia around 10000 years ago up to modern breeding practices and biomedical 

models (Groenen et al., 2012). 

 Pigs are commonly raised for meat, which is the most important animal protein 

food source, and feed a majority of the global population. As an important meat source 

in a world with increasing and demanding food needs, particularly due to developing 

countries and exponential human population growth, this particular livestock species has 

increased its global population by 13 percent in the last two decades (FAO, 2013). 

 As a component of meat, fat, particularly saturated fat, is generally considered as 

deleterious to the health of the consumers, and is associated with higher chances on 

developing heart disease. Therefore animal feed strategies and processing technologies 

are nowadays increasingly used to alter meat composition to be more consistent with 

human dietary guidelines. Nevertheless, these strategies and techniques need to be based 

on the knowledge of the genetic potential and physiological characteristics of the animals 

to be efficient. 

 The perception of the adipose tissue being solely an energy storage organ has been 

extended to include an endocrine organ that plays a pivotal role in relation to energy 

homeostasis and metabolism. Apart from secreting free fatty acids, adipose tissue 

produces and releases numerous proteins and substances with autocrine, paracrine and 

endocrine functions. 

The Alentejano (AL) pig, Sus mediterraneus, is an autochthonous breed, reared in 

the southern area of Portugal. This breed has been scarcely selected through centuries and 

due to its trend to fat deposition, is smaller in size and presents poorer meat yields than 

modern commercial breeds. This precocious and high trend of fat storage has been found 

not only in AL and Iberian pigs, but also in other animal species and even in humans, 

being named as “thrifty” genotype. In fact, the thrifty genotype is an adaptive mechanism 

to the environment allowing accommodation to cycles of feasting and famine (Neel, 1962) 

One intrinsic mechanism of the thrifty genotype has been recently associated in humans 

with a syndrome known as leptin resistance. Leptin resistance has been identified with 

disruptions of signal transduction processes at the level of leptin receptors with effects on 

food behavior and obesity (Lubis et al., 2008). Thus, leptin resistant individuals are obese 

genotypes with elevated leptin levels but unable to suppress feeding when food is in 

excess (Myers et al., 2008). In the Iberian pig a leptin receptor gene polymorphism has 

also been detected, with effects on food intake, body weight and fat deposition (Munoz 

et al., 2009; Ovilo et al., 2005). 
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 Porcine genome sequencing it’s of most importance because it provides a valuable 

feature for this livestock species progress, while enables continuous studying for multiple 

disease-causing variations extending the swine potential as a biomedical model. (Groenen 

et al., 2012)  

 This study’s main goal is to sequence a lipogenic enzyme gene, fatty acid synthase 

(FAS), of an obese AL pig. Genotyping was performed in the most important tissue 

involved in the lipid metabolism, subcutaneous adipose tissue. 
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II. LITERATURE REVIEW 

 

 

1. The Alentejano pig - Historical and Local Background 

 

1.1. The Swine 

 

 The autochthonous pig breed Alentejano (AL) or Black pig is a traditionally raised 

breed that produces high quality meat products thanks to its particular production system 

and very particular genotypic features (Freitas et al., 2007; Lopez-Bote, 1998). 

 AL breed is reared in the southern region of Portugal and descends from Sus scrofa 

mediterraneus lineages, just as the genetically similar Iberian pig. Crosses between these 

two Sus mediterraneus descendants are common throughout the years. The Iberian pig 

term is accepted and used among many authors, to refer the several breeds existing in the 

Iberian Peninsula region (Martins et al., 2012; Nunes, 1993). 

 The Iberian Peninsula constitutes a strong historical and geographical unit that 

throughout history contributed to the formation of many local animal breeds, including 

the AL/Iberian pig. Nevertheless, there still is considerable genetic differentiation and 

relatively high genetic diversity found in Iberian breeds, most of them considered genetic 

resources (Canon et al., 2011; Matos, 2000; Nunes, 1993). 

 This Iberian swine branch presents, generally, several features: dark skin and hair 

color (if present); pointed snout; short and strong limbs. These morphological traits reflect 

the adaptation of the swine to the local conditions, particularly in terms of resistance to 

sunstroke and high temperatures (Fabuel et al., 2004; Nunes, 1993). Reproductive and 

zootechnical parameters are presented in several works (e.g. Freitas et al. (2006)). 

  Swine production can be divided into three distinct types depending on the final 

product: meat (e.g. Duroc, German Landrace, Pietrain); bacon (e.g. Danish Landrace, 

Tamworth) and fat (e.g. AL/Iberian, Gascon, Casertana). Meat-type pig breeds are 

characterized by high daily weight gains and are slaughtered with a low body fat content 

and constitute the main source of pork in developed countries, while fat-types have a 

lower BW gain and produce carcasses rich in fatness (Freitas et al., 2007; Switonski et 

al., 2010). 

 The AL is of smaller size and fatter, besides holding higher intramuscular fat (IMF) 

content than other Iberian breeds. This obese breed is characterized by slow growth rates 
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and precociously high lipogenic activity. Traditionally, these pigs are fed until they reach 

a body weight (BW) between 150 and 170 kg and 18-24 months of age, when they are 

ready for slaughter (Lopez-Bote, 1998; Martins et al., 2012; Nunes, 1993).  

 Unlike modern lean-type breeds, the AL is a local raised unselected breed with 

considerable genetic differentiation and poor productive traits. Nevertheless, until the 

second half of the 20th century, the AL pig breed was, economically, the most important 

Portuguese pig breed. Their meat, rich in IMF, is mainly used for the manufacture of 

high-quality dry-cured products. More recently, an increased interest on these products 

and in fresh meat from Al pigs has been observed among consumers, sustained by their 

intrinsic quality and healthiness (Freitas et al., 2007; Freitas et al., 2006; Gonzalez-

Anover et al., 2010; Teixeira and Rodrigues, 2013) (see below). 

 Swine fatty acid (FA) synthesis is mainly through de novo synthesis (around 80% 

or more on adipogenic breeds) in adipose tissue with the possibility of independent 

intramuscular FA synthesis (Hood and Allen, 1973; Martins et al., 2012). Besides a higher 

content of fat, carcasses of AL and Iberian pigs generally present a higher content of oleic 

acid and (Estévez et al., 2006; Martins et al., 2012), consequently, a lower content of 

saturated fatty acids (SFA) commonly associated with the development of cardiovascular 

diseases (CVDs) (Estévez et al., 2006). 

 The production of AL and Iberian pigs is deeply rooted to the Mediterranean 

ecosystem. The contribution of this swine breed to the preservation and sustainability of 

its ecosystem is not common among the swine production industry (Lopez-Bote, 1998; 

Matos, 2000; Pugliese and Sirtori, 2012). In fact, local pig breeds and their production 

systems have been able to respond to the high criteria and expectations of modern society 

in regard to environment, animal welfare, and food quality and healthiness (Pugliese et 

al., 2013). 

 

1.2. Production System - The Influence of Montado and Montanheira 

 

 Alentejo, the southern region of Portugal where AL pig is reared, is full of 

extensive plains of poor, substantially degraded soils where livestock production 

represents an important local economic activity. The agro-silvo-pastoral system 

characteristic of this region is based on the montado. (Freitas et al., 2006). 

 The feed availability offered by the Portuguese montado is seasonal and also 

varies from year to year (Lopez-Bote, 1998; Nunes, 1993). 

 Traditionally, a diverse diet is supplied to pigs in extensive free-range conditions 

in long production cycles. Fattening periods during late October until February take full 

advantage of the montado landscape opposing the periods of scarcity where feed 

supplementation based on cereals/commercial diets might be required. The fattening 
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montanheira period explores local natural resources such as native pastures and Quercus 

rotundifolia and Quercus suber fruits (acorns), and is perfectly adapted to the AL 

extensive production. Acorns are low in protein, rich in the monounsaturated fatty acid 

(MUFA) oleate (C18:1) and pastures on polyunsaturated fatty acids (PUFA) linoleic 

(C18:2) and linolenic (C18:3) acids, besides fiber, protein and antioxidants such as alpha-

tocopherol. Native pasture consumption also contributes for the detoxification due to the 

tannin content of acorns, while complementing the acorns low-protein content. In the 

traditional production systems, pigs are finished in the montanheira, where they are 

submitted to a quick and intense fattening period (Gonzalez-Anover et al., 2010; Matos, 

2000; Nunes, 1993). 

 Modern explorations maintained the most dominant and interesting traits of the 

traditional production system, particularly, fattening pigs in montanheira associated with 

the exploration of reproductive sows. Nevertheless, there isn’t a uniform production 

system since mating season, feed management, weight and age of slaughter varies among 

farms (Freitas et al., 2006). 

 More recently, an evolution in this production system has been verified, with the 

objective of a more intensified production. The feeding of pigs for example, is based on 

commercial MUFA-enriched diets having alpha-tocopherol supplementation up to 200 

mg/kg in order to simulate the effects of the montanheira in the traditional free range 

feeding system (Daza et al., 2005). The growing interest on the semi-extensive camping 

system for swine management (requiring fewer workers) is another example (Matos, 

2000). 

 Nowadays, pigs used to produce hams and dry-cured products are slaughtered at 

150-170 kg BW and 14 to 24 months of age and are finished in montanheira (high quality 

products) or semi-extensive production systems (lower quality products). When sausages 

are the final product, pigs are slaughtered at 120-140 kg, and 14-20 months of age. Finally, 

for fresh meat, pigs are slaughtered at 90-100 kg and 8-14 months of age. These two final 

products are generally obtained from pigs reared in the semi-extensive and intensive 

production systems (Freitas et al., 2006). 

 Pork is one of the most produced and consumed meat-types in the world, despite 

the negative assumptions broadly made. The widespread opinion about the unhealthy 

effects of this meat is mainly related to its SFA and cholesterol content (FAO Food and 

Agricultural Organization of the United Nations., 2013a; Teixeira and Rodrigues, 2013; 

Wood et al., 2008). 

 Commercial lean-type pig breeds, developed to reduce pork total lipid content, 

have better productive traits when compared to AL and other unselected breeds. They are 

raised on intensive systems, using advanced technology which translates into an 

improvement in terms of carcass meat yield and manufacturing of low cost products. 

Nevertheless, animal products raised traditionally foster now more interest among 

consumers. This current interest might be associated with the characteristics of the 

extensive production systems that guarantee quality to the final product, increasing 
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consumer interest in organic and natural pig production. The high IMF content in 

AL/Iberian pork products is responsible for much appreciated organoleptic traits such as 

tenderness, juiciness and flavor (Gonzalez-Anover et al., 2010; Pugliese et al., 2013; 

Switonski et al., 2010). 

 AL and Iberian products represent an important part of traditional pork production 

and have significant commercial value. Furthermore, the distinctive FA profile of its meat, 

rich in unsaturated fatty acids (UFAs) and lower SFA content, contributes to an improved 

consumer approval of these products. 

 

 

2. Swine-based research 

 

 

2.1. Swine as Human Biomedical Model 

 

 The use of animal models for research of human diseases is a general practice that 

provides important information for development of prevention strategies and appropriate 

treatments. Better models rely on anatomic and physiological similarities to enable 

reliable extrapolations to humans. 

 Rodent subjects are widely adopted for human health studies. Nevertheless, rodent 

models occasionally fail to fully mimic human conditions, so an increasing need for 

animals closer to humans to further study diseases such as cystic fibrosis, diabetes or 

obesity, among others, is required (Cirera et al., 2014; Spurlock and Gabler, 2008; 

Walters et al., 2012). 

 In the last three decades, the adoption of pigs as human biomedical research model 

has broadly increased, particularly for general surgical models of most organs and 

systems, for cardiovascular research and in digestive system models, and more recently 

in transplantation and xenographic research through genetic engineering (Hamamdzic 

and Wilensky, 2013; Walters et al., 2012; Whyte and Prather, 2011). 

 Completion of the swine genome is currently simplifying and broadcasting the use 

of swine models in several research areas. For instance, it is now possible to search for 

single nucleotide polymorphisms (SNPs) of specific human disease genes and compare 

them to the ones existing in pigs. Through modern genomic modification techniques, 

swine gene functions can be altered, aiding the development of novel disease models 

based on transgenes on areas as diverse as cardiovascular disease, xenotransplantation 

and neurodegenerative diseases (Walters et al., 2012; Whyte and Prather, 2011). 
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 The vast conserved homology saved by both, swine and human, genomes is one 

of the main features that support the extensive use of swine as biomedical models. Both 

species are omnivorous and their organs share similar functional features. Furthermore, 

resemblances in size, anatomy and physiology make the swine a suitable model for 

research in gene and cell therapy, xenograft and allograft procedures and other fields of 

regenerative medicine. Similar disease progression has allowed the possibility of a broad 

range of distinct biomedical swine research models. All-season breeding and large litter 

sizes provides great availability of individuals that hold short generation intervals (12 

months) and gestation lengths (114 days), plus an early sexual maturity (5-8 months) and 

short lifespan (10-20 years). Handling pigs from the same litter, or cloned or transgenic 

pigs, eases genetic mapping. Choosing the right breed and age allows the execution of 

various surgical and non-surgical procedures generally used in human medicine, 

including catheterization, heart surgery, valve manipulation, endoscopy and broncho-

alveolar lavages. In opposition, some of these procedures are found hard to practice in 

other animal models including rodents (Lunney, 2007; Meurens et al., 2012; Rothschild 

and Ruvinsky, 2011). 

 Swine also allow the possibility to perform time studies, image internal vessels 

and organs, and collect repeated peripheral samples and, at kill, detailed tissue samples. 

Access to well defined cell lines from different tissues eases gene expression and drug 

susceptibility testing, for example. Moreover, swine full genomic code is already 

available and its high sequence and chromosome structure homology with humans will 

provide a further improvement to its genomic and proteomic tools. Swine models are 

inexpensive and ethically more acceptable than primates and other animals since they are 

used for human feeding as well. Table 1 summarizes the general advantages of swine 

biomedical models (Lunney, 2007; Meurens et al., 2012). 

 

Table 1. Major advantages of a swine biomedical model.                                                       

 

 Human sized - particularly miniature pigs 

 Similar anatomy and physiology to humans 

 Availability of individuals  

 Advanced cloning and transgenic technology 

 Availability of numerous well defined cell lines 

 Similar disease progression (metabolic, infectious and across species diseases) 

 Ability to perform various surgical procedures and of collecting multiple samples by choice 

 

 Complete swine genome sequence availability with improving genomic and proteomic tools 

 

 High sequence and chromosome structure homology with humans 

 

Adapted from Lunney (2007) and Meurens et al. (2012) 
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2.2. Swine Biomedical Models for Obesity and type-2 Diabetes Studies –

Fatness Genetics 

 

 Obesity is a chronic disease characterized by excessive body fat in tissues due to 

over accumulation of fat stores at the adipocyte level. In Humans, obesity is effectively 

diagnosed when body mass index (BMI) is superior to 30 kg m-2. Obesity is a major health 

risk factor for a number of chronic diseases, including diabetes, cardiovascular diseases, 

and cancer. Among adults, worldwide prevalence of obesity is over 10% and prevalence 

of obesity and overweight ascend up to more than 30%. In Europe and Northern America 

these results reach 60 and 70% of the adult population, respectively. Despite these 

alarming results, trends are expected to climb even more in coming years (FAO Food and 

Agricultural Organization of the United Nations., 2013b; Spurlock and Gabler, 2008). 

 Biochemical mechanisms responsible for obesity haven’t yet been fully identified 

and while rodent models have been extensively experimented for obesity research, their 

translational utility is less effective than pigs. This fact seems to be related with some 

differences at metabolic and physiological levels between rodents and humans. For 

example, several adipokines, such as adipsin or resistin, cytokines secreted by the adipose 

tissue, appear to have different activities (Arner, 2005; Spurlock and Gabler, 2008). 

Furthermore, swine, as humans, are devoided of brown adipose tissue postnatally. This 

resemblance is very important since brown adipose tissue can induce heat production and 

therefore regulate energy balance (Harms and Seale, 2013; Spurlock and Gabler, 2008). 

 Several studies suggest that obesity is highly correlated with macrophage 

accumulation in adipose tissue. Activated macrophages secrete various cytokines and 

chemokines involved in systemic inflammation such as tumor necrosis factor (TNF)-α, 

interleukin (IL)-1, IL-6 and monocyte chemoattractant protein (MCP)-1, the later 

contributing to infiltration of adipose tissue with immunocytes (Harford et al., 2011; 

Spurlock and Gabler, 2008; Weisberg et al., 2003; Xu et al., 2003). 

 As obesity, type-2 diabetes is a major cardiovascular risk factor, namely for 

developing coronary heart disease (Haffner et al., 1998). 

 Chronic inflammation induced by obesity can develop insulin resistance. It is 

widely known that high plasma FA concentrations are closely related to obesity because 

expansion of the adipose tissue entails FA release from the adipocyte depots. Furthermore, 

obesity-associated changes induce alterations in the secretion patterns of adipokines that 

modulate insulin signaling (see illustration 1, path B). Recent in vitro studies have 

demonstrated that SFAs stimulate tissue inflammation the same way as bacterial 

lipopolysaccharides (LPS), through activation of toll-like receptors (TLR)-4 (illustration 

1, path G) which indirectly promote cell inflammation with further production of pro-

inflammatory TNF-α and IL-6 through the activation of protein kinases such as Protein 

Kinase C (PKC, EC 2.7.11.13), IκB kinase-β (IKKβ, EC 2.7.11.10), Jun kinase (JNK, EC 

2.7.11.24) and the inhibitor of nuclear factor-κB (NF-κB, EC 2.7.11.10) (illustration 1, 
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path E). These kinases are responsible for the serine phosphorylation of insulin receptor 

substrates (IRS) that inhibits insulin signaling (illustration 1, path D). Moreover, the 

adipokine induced family proteins SOCS-3 conflict with IRS-1 and IRS-2 by 

phosphorylation or proteosomal degradation (illustration 1, path F). Main consequences 

to insulin sensitivity are an increased glucose synthesis in the hepatocyte, while on the 

myocyte the glucose uptake is decreased (Bjorntorp et al., 1969; Chait and Kim, 2010; 

Qatanani and Lazar, 2007; Spurlock and Gabler, 2008). 

 

 Another adipokine closely related to obesity and inflammation, in pigs as in 

humans, is adiponectin. Adiponectin is a protein secreted exclusively by adipose tissue 

that modulates lipid metabolism by inducing AMP-activated protein kinase, AMPK (EC 

2.7.11.31), activity which deactivates acetyl CoA carboxylase, ACC (EC 6.4.1.2) and, 

consequently, suppresses carbohydrate transformation into lipid reserves by inhibiting de 

novo fatty acid synthesis. A small number of studies showed that lower concentrations of 

circulating adiponectin are found in obese and among insulin resistant subjects, 

suggesting anti-inflammatory effects. On the other hand, leptin is an adipocyte secreted 

hormone that regulates physiological functions in energy shortage periods and, when 

absent, leads to major metabolic disturbances due to increased insatiability. Adiponectin 

and leptin are found to be reciprocally regulated (Brennan and Mantzoros, 2006; Qatanani 

and Lazar, 2007; Spurlock and Gabler, 2008; Wu et al., 2003). 

 Anti-inflammatory effects by adiponectin have been reported in both swine and 

human adipose tissue. Production of pro-inflammatory cytokines as IL-6 and TNF by 

activated macrophages is suppressed by adiponectin. On the other hand, IL-6 and TNF 

Illustration 1. Insulin resistance induced by obesity might involve a complex network of 

endocrine, inflammatory and neuronal pathways.  

 

Adapted from Qatanani and Lazar (2007) 
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regulate adiponectin expression by inhibiting its mRNA expression (Spurlock and Gabler, 

2008). 

Further studies, using more swine subject models, might uncover more or confirm 

about the crucial role that these and other factors might have in inflammation, obesity and 

obesity-related diseases. These studies will include the search for gene mutations, 

polymorphisms and allele comparison in relevant genes, taking advantage of the recent 

availability of the full swine genome sequence and development of techniques such as 

SNP microarrays (Bruun et al., 2003; Spurlock and Gabler, 2008; Switonski et al., 2010; 

Wulster-Radcliffe et al., 2004; Yokota et al., 2000). 

Evaluation of genetic predisposition through comparative genomic studies on 

obesity candidate genes and search for fatness quantitative trait loci (QTLs) are current 

fields of obesity research in expansion. All these obese swine traits have high polygenic 

background. To date, more than 100 loci have been identified and associated with obesity-

related traits by genome-wide association studies (GWAS) as well as several candidate 

genes. Nevertheless, this approach is revealing to be rather limited since the individual 

expression value of current identified candidate genes is quite low when explaining 

fatness phenotypic traits. This is thought to be related with the high polygenic background 

involved in the determination of fatness traits, as well as the possibility of epistatic effects 

between potential genes (Cirera et al., 2014; Schook et al., 2005; Switonski et al., 2010). 

Modern pig breeding has also found interest in studying swine genetic background 

in order to improve livestock production. Most important and studied swine fatness traits 

are backfat thickness (BFT), abdominal fat weight (AFW), IMF content and FA 

composition. BFT and AFW are related to fattening efficiency while IMF and FA 

composition affect quality meat traits and display nutritional value. IMF levels vary 

between breeds and muscle type. In Longissimus dorsi, for example, one of the most 

valuable muscles, the average IMF content in selected breeds is about 1.7%, while in 

AL/Iberian pigs this is much higher and may attain 6%. Furthermore, lean-type pig breeds 

are selected towards lower levels of BFT and growth of leaner tissues (Daza et al., 2006; 

Switonski et al., 2010). 

Limitations occur when translating conclusions about porcine candidate genes to 

humans and vice-versa in fatness deposition. While studies of human obesity focus on 

BMI, traits studied in swine are concerned with different aspects of fatness which span 

candidate genes that may not prove to be as relevant for human obesity research. 

Nevertheless, particular animal models, such as the obese Ossabaw pig, are becoming 

increasingly valuable assets to understand the development of human obesity, obesity-

induced insulin resistance and ultimately the metabolic syndrome and cardiovascular 

diseases. (Switonski et al., 2010) 
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2.3. Potential of the AL Breed  

 

 Several recent research studies about human obesity and development of 

metabolic syndrome have been done with Ossabaw pigs as models. For example, this 

breed can easily and efficiently simulate human atherosclerosis. This swine breed is 

exclusively found on Ossabaw Island (Georgia, USA) and features a thrifty genotype 

which drivens it to feast in excess, easily become obese and develop all pathologies 

clustering metabolic syndrome such as obesity with severe visceral adipose expansion, 

primary insulin resistance, glucose intolerance, dyslipidemia and hypertension. Presence 

of three out of five of these symptoms is required to characterize metabolic syndrome in 

humans. Ossabaw swine can become overly obese even when fed with diets with no added 

fat but rich in carbohydrates. Recent studies suggest that these pigs are descendent from 

an Iberian branch which may explain their morphological and metabolic similarities 

(Brisbin and Sturek, 2009; Faris et al., 2012; Hamamdzic and Wilensky, 2013; Spurlock 

and Gabler, 2008; Toedebusch et al., 2014). 

 Understanding of the pathophysiology of metabolic syndrome has been delayed 

by the lack of efficient human-like models. However, Ossabaw breed happens to be one 

of the best models for studying metabolic syndrome in humans due to the easiness in 

developing all its associated pathologies at once. As the Ossabaw strain, AL pigs hold 

high propensity for obesity, due to an adaptive thrifty genotype, including a great capacity 

to accumulate intramuscular and epidermal fat (Hamamdzic and Wilensky, 2013). 

Iberian pigs hold a polymorphism on the leptin receptor gene (LEPR) causing a 

condition commonly known as leptin resistance, characterized by failure in feeding 

suppression due to high concentrations of leptin found in obese individuals. This genetic 

feature results in implications at food intake, BW and fat deposition patterns, promoting 

obesity development (Munoz et al., 2009; Ovilo et al., 2005). 

Recently, a study conducted by Torres-Rovira et al. (2012) concluded that within 

three months, Iberian sows with access to an ad libitum diet enriched with saturated fat, 

developed all five criteria associated to metabolic syndrome. This suggests that 

AL/Iberian pigs could be a valuable human model for further comprehension on 

mechanisms involved in obesity and its associated comorbities. 

 

3. Lipid Metabolism 

 

 This chapter will be focused in introducing mammalian lipids as important energy 

stores in adipose tissue, and their successive transformations, depending on the current 

metabolic needs. 
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3.1. Introduction to Lipids – The Fatty Acids 

 

 Lipids are a class of biomolecules that display a variety of distinct biological and 

structural functions. Lipids integrate cell membranes, carry fat soluble vitamins, and play 

vital roles as enzyme cofactors, hormones, and electron carriers, among others. 

Nevertheless, their main function lies in providing energy (Berg et al., 2012; Hussain et 

al., 2013; Lehninger et al., 2008). 

 Animals store energy mainly in the form of fat so that proteins don’t have to be 

used, allowing them more important roles such as building and repairing tissues. In 

addition, storing calories as fat is more efficient than with the same mass of carbohydrates 

in the form of glycogen. Energy stores offer survival for long periods of food deprivation 

and its associated efficiency is thought to offer important advantages to animals during 

evolution (Lehninger et al., 2008; Semenkovich, 1997). 

 Animals store energy in the form of FAs, the simplest class of lipids. They contain 

a methyl group, a long hydrophobic hydrocarbon chain varying between 4 and 36 carbon 

atoms, and a terminal carboxylate group (illustration 2). FAs can be stored in excess 

amounts in the adipose tissue and oxidized in all tissues, particularly liver and muscle, 

acting as a major source of fuel to cells. In the form of phospholipids (mainly 

phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin), FAs form the 

backbone of cell membranes and contribute for their fluidity and functionality. FAs can 

also be found freely, circulating bound to albumin or integrated in triacylglycerols and 

waxes (Lehninger et al., 2008; Tvrzicka et al., 2011; Vance and Vance, 2008) (see 

illustration 3). 

 

 

 

 

 

 

 

Illustration 2. The structure of palmitic acid or palmitate (C16:0), one of the most common FAs found 

in animals. Carbon count starts from the carboxylic group (1), the first carbon after the carboxyl carbon 

is called α (2) while the next is known as β (3) and the fourth as γ (4). 
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 Fatty acids can be defined as being saturated or unsaturated, depending on the 

absence or presence of double bonds between two carbon atoms in the aliphatic chain, 

respectively. Furthermore, UFAs display cis-trans isomerism, describing the orientation 

of the alkyl groups around the double bond. The trans isomer of a given FA can rarely be 

found in nature. Trans FAs can be obtained in dairy products or their meat and can also 

be produced by partial hydrogenation of fish and vegetable oils. Large dietary intakes of 

trans FAs are strongly correlated to increased levels of triacylglycerols and LDL (low-

density lipoprotein) cholesterol and lower levels of HDL (high-density lipoprotein) on 

blood, conducing to a higher risk in developing cardiovascular diseases (Chilliard, 1993; 

Lehninger et al., 2008). 

 Delta (Δ) FA nomenclature is a simple mean of classification and identification of 

different FAs by specifying the chain length and number of double bonds, separated by a 

colon. In addition the number superscripted above the Δ represent the number of carbons 

from the carboxylic acid end to the first carbon in the double bond (Lehninger et al., 2008) 

(illustration 4). This simplified nomenclature, along with common names, will be 

recurrently used throughout this thesis. 

A. 

B. 

C. 

Illustration 3. Distinct types of fatty acid–containing compounds. A. The structure of 

phosphatidylcholine (glycerolphosphate-based lipid), a phospholipid based on a glycerol backbone 

along with a phosphate group, a choline group and two stearic acids (C18:0); B. The structure of a 

triacylglycerol comprising a glycerol and three distinct FA, from top to bottom: palmitic acid (C16:0), 

oleic acid (C18:1, Δ9) and alpha-linolenic acid (C18:3, Δ9, 12, 15); C. The structure of the animal wax 

ceryl myristate, an ester of ceryl alcohol and myristic acid (C14:0). 
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3.2. Fatty Acid Catabolism  

 

 Animal cells can obtain FAs from three distinct pathways: fats ingested in the diet, 

lipolysis of lipids stored in cells and de novo synthesis. 

 Triacylglycerols are formed by esterification of the three hydroxyl groups of 

glycerol by carboxyl groups of organic acids. They function as highly concentrated 

energy stores accumulated in cell depots, mainly in liver and adipose tissue. Their energy 

yield from complete oxidation is nearly 38 kJ g-1 whereas from carbohydrates and proteins 

is 17 kJ g-1. Such difference lies in the fact that FAs are much more reduced than 

carbohydrates or proteins (Berg et al., 2012). 

 Adipose tissue cells or adipocytes, are specialized cells that act as major site for 

triacylglycerol storage and synthesis. In mammals, adipose tissue can be found all over 

the body, particularly under the skin (subcutaneous) and surrounding internal organs 

(visceral). This tissue works mainly as an energy depot, where droplets of triacylglycerols 

tend to form large globules that can fill most of cell’s volume. The surface of these 

droplets is covered with perilipins that restrict the access to the lipids (Berg et al., 2012). 

 Lipolysis and β-oxidation of free fatty acids (FFAs) is the main energy-yielding 

pathway for animal tissues. This process occurs in the mitochondria and is characterized 

by the degradation of FAs to generate acetyl-CoA. Access to the lipid energy reserves 

stored in adipose tissue involves three main stages: i) mobilization of FFAs; ii) activation 

and transport to the mitochondria; and iii) degradation into acetyl CoA (Berg et al., 2012; 

Lehninger et al., 2008). 

Illustration 4. Example of fatty acids classification using the delta nomenclature, from top to bottom: 

stearate (C18:0), trans-oleate (C18:1, Δ9) and cis-oleate (C18:1, Δ9). 
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3.2.1. Mobilization of Free Fatty Acids 

 

 The first step consists in isolating the FAs stored as 

triacylglycerols or mobilizing FFAs. For that, lipases of 

adipose tissue are activated to hydrolyze triacylglycerols 

into glycerol and FAs in a process also known as lipolysis 

(illustration 5). 

 Adipocyte lipases are activated by hormones such 

as epinephrine or glucagon. These hormones are 

responsible for the trigger of seven transmembrane (7TM) 

receptors that induce adenylate cyclase (EC 4.6.1.1) 

activity. Increased levels of cyclic adenosine 

monophosphate (AMP) stimulate protein kinase A (EC 

2.7.11.11) activity which, afterwards, activates cytosol 

hormone-sensitive lipases (EC 3.1.1.79) and perilipins by 

phosphorylation (Berg et al., 2012; Lehninger et al., 2008). 

 Activated perilipins are the proteins responsible 

for: restructuring of the lipid droplet in a way that it’s 

easier for lipases to access triacylglycerols; the release of 

a coactivator for the adipose triglyceride lipase (ATGL, 

EC 3.1.1.3). ATGL hydrolyzes a FA forming 

diacylglycerol in the process, while hormone-sensitive 

lipase removes a second FA. Monoacylglycerol lipase (EC 

3.1.1.23) completes the mobilization producing a last FFA 

and glycerol (Berg et al., 2012). 

 Released FFAs are not soluble in blood, so they bind into serum albumin, which 

will carry them to the energy-requiring tissues. On the other hand, the glycerol is absorbed 

by the liver where it’s transformed into glyceraldehyde 3-phosphate and can participate 

in either the glycolytic or gluconeogenic pathways (Berg et al., 2012). 

 

3.2.2. Activation and Transport to the Mitochondria 

 

 Full animal FA oxidation occurs in the mitochondrial matrix. FA with chain 

lengths of 12 or fewer carbons do not need membrane transporters to enter in the 

mitochondria. Longer FFAs need to be activated and then carried by a carnitine based 

transport mechanism to reach the mitochondrial matrix (Lehninger et al., 2008). 

Illustration 5. Hydrolysis of a 

trigliceride into glycerol and 

FAs by adipocyte lipases.       

 

      Adapted from Berg et al. (2012) 
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 Activation occurs on the outer mitochondrial membrane where long-chain FFAs 

are linked to Coenzyme A (CoA) by a thioester bond, in a reaction catalyzed by acyl CoA 

synthetase (EC 6.2.1.3). This process is ATP-dependent and comprehends 2 steps. On the 

first one, the FA reacts with ATP forming acyl adenylate releasing pyrophosphate 

(illustration 6) (Berg et al., 2012; Lehninger et al., 2008). 

 

 

 

 

 

 

 

 

 

 On the second step, the thiol group of CoA displaces AMP, conducing to the 

formation of the thioester acyl CoA (illustration 7). 

 

 

 

 

 

 Both reactions are reversible and have an equilibrium constant close to 1. In order 

to pull these reactions in the forward direction, the pyrophosphate formed in the first 

reaction is rapidly hydrolyzed into two monophosphates by an inorganic pyrophosphatase 

(EC 3.6.1.1) (Berg et al., 2012; Lehninger et al., 2008). 

 FAs are activated on the outer mitochondrial membrane, yet they are oxidized in 

the mitochondrial matrix. Their transfer across the mitochondrial membrane involves 

carnitine. The acyl group present in the activated long-chain FAs binds to the hydroxyl 

group of carnitine to form acyl carnitine in a reaction catalyzed by carnitine 

acyltransferase I (EC 2.3.1.21) (Berg et al., 2012; Lehninger et al., 2008) (illustration 8). 

 

 

 

Illustration 6. Formation of acyl adenylate and pyrophosphate in the first 

reaction of the FA activation process. 

 

 

Illustration 7. The second activation step comprises the formation of the thioester acyl CoA.  

 

Adapted from Berg et al. (2012) 

Adapted from Berg et al. (2012) 
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Acyl carnitine translocase mediates the entrance of the acyl carnitine ester to the 

mitochondrial matrix. There, the acyl group is transferred from acyl carnitine to 

intramitochondrial CoA, in a reaction catalyzed by carnitine acyltransferase II (EC 

2.3.1.21), releasing free carnitine. Carnitine can, then, return to the cytosolic side of the 

mitochondrial membrane through the translocase in exchange for acyl carnitine to balance 

the process (Berg et al., 2012) (illustration 9). 

 

 

 

 

 

 

 

 

 

 

                

 

 

 

 

Illustration 8. Transfer of the activated acyl into the mitochondrial matrix involves a previous 

reaction, on the outer mitochondrial membrane, with carnitine forming acyl carnitine.     

 

Illustration 9. Summary of the acyl group transportation from cytosol to the mitochondrial 

matrix, a process mediated via acyl carnitine translocase. 

 

 

Adapted from Berg et al. (2012) 

Adapted from Berg et al. (2012) 
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3.2.3. Fatty Acid Degradation – β-oxidation 

 

 Within the mitochondrial matrix, a four-

step operation known as β-oxidation occurs. 

This cycling oxidation process takes place at the 

β carbon atom and includes a first oxidation by 

flavin adenine dinucleotide (FAD), hydration, 

oxidation by oxidized nicotinamide adenine 

dinucleotide (NAD+) and thiolysis by CoA 

(illustration 10) (Berg et al., 2012). 

 In the first step, acyl CoA is oxidized to 

produce a double bond between carbon atoms 2 

and 3 in an oxidation process also known as 

dehydrogenation that is catalyzed by acyl CoA 

dehydrogenase (EC 1.3.8.7). The lost hydrogen 

atoms reduce the electron carrier FAD to its 

reduced form FADH2 (Berg et al., 2012; 

Lehninger et al., 2008). 

 The resultant product, trans-Δ2-enoyl 

CoA, is then hydrated on the second step 

conducing to the formation of L-3-hydroxyacyl 

CoA in a reaction catalyzed by enoyl CoA 

hydratase (EC 4.2.1.17) (Berg et al., 2012; 

Lehninger et al., 2008). 

 The third step involves another oxidation 

reaction, which converts the hydroxyl group at 

C-3 into a keto apart from generating reduced 

nicotinamide adenine dinucleotide (NADH) 

from NAD+. This oxidation is specifically 

catalyzed by L-3-hydroxyacyl CoA 

dehydrogenase (EC 1.1.1.35) (Berg et al., 2012; 

Lehninger et al., 2008). 

 In the last step (thiolysis), the previously 

formed 3-ketoacyl CoA is cleaved by the thiol 

group of a free coenzyme A molecule, yielding 

acetyl CoA and an acyl CoA molecule 

shortened by two carbon atoms. This reaction 

is catalyzed by acyl CoA acetyltransferase 

(thiolase, EC 2.3.1.16) (Berg et al., 2012; 

Lehninger et al., 2008). 

Illustration 10. β-oxidation involves 4 

main steps: oxidation, hydration, oxidation 

and thiolysis. 

 

 

 

 

                  Adapted from Berg et al. (2012) 
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 Therefore, for each oxidation cycle, a 

determined acyl CoA is shortened by two 

carbon atoms and one molecule of FADH2, 

NADH and acetyl CoA are formed. The 

last oxidation cycle of an acyl CoA with an 

even number of carbon atoms ends up 

producing two copies of acetyl CoA and 

one molecule of the electron carriers 

FADH2 and NADH (Lehninger et al., 

2008). 

 The acetyl CoA produced from β-

oxidation enters the Citric Acid Cycle 

(Kreb’s Cycle), as well as those derived 

from glucose via glycolysis, where it’s 

further oxidized to CO2, while generating 

more electron carriers such as NADH and 

FADH2. These, in turn, transfer their 

energy to the mitochondrial respiratory 

(electron-transfer) chain, thus inducing the 

synthesis of more ATP. This can be 

represented as a three-stage process as 

shown on illustration 11 (Berg et al., 2012; 

Lehninger et al., 2008). 

 

 

 

 

 

3.2.4. Degradation of Unsaturated Fatty Acids 

 

 Oxidation of UFAs requires up to two additional reactions compared to the 

previously described oxidation sequence. The double bonds present in these FAs are 

frequently in cis configuration, which prevents them from being hydrated on the second 

degradation reaction. This is because enoyl CoA hydratase, the enzyme responsible for 

catalyzing the addition of H20, operates only on trans double bonds. Besides, the presence 

of a double bond between C-3 and C-4 prevents the formation of another double bond 

between C-2 and C-3. The solution to this problem comes from cis-Δ3-enoyl CoA 

isomerase (EC 5.3.3.8), an enzyme capable of shifting the position and configuration of 

the cis-Δ3 double bond to a trans-Δ2 double bond. The substrate is now similar to those of 

the SFA oxidation sequence and β-oxidation can proceed (Berg et al., 2012; Lehninger et 

al., 2008) (illustration 12). 

Illustration 11. After β-oxidation, the main 

resultant product, acetyl CoA, enters the Citric 

Acid Cycle for e- production that can be 

transported via NADH and FADH2 carriers to 

enter the respiratory chain for ATP synthesis. 

 

Adapted from Lehninger et al. (2008)               
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 Polyunsaturated fatty acids (PUFAs), have more than one double bond and require 

an additional reaction to get fully oxidized. 

 At some point of the β-oxidation pathway, a stalemate occurs from the formation 

of a trans-Δ2, cis-Δ4-dienoyl CoA intermediate which is not a substrate for trans-enoyl 

CoA hydratase and therefore, cannot be directly hydrated. Nevertheless, 2,4-dienoyl CoA 

reductase (EC 1.3.1.34), a NADPH-dependent enzyme can convert this substrate to trans-

Δ3-enoyl CoA. This new substrate can now be converted by cis-Δ3-enoyl CoA isomerase 

to trans-Δ2-enoyl CoA and full oxidation can proceed normally (Berg et al., 2012) 

(illustration 13). 

 

 

 

 

 

Illustration 12. The full oxidation of a monounsaturated fatty acid (MUFA) involves the action 

of an isomerase to change the double bond location and configuration. 

Adapted from Lehninger et al. (2008) 
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3.3. Dietary Lipid Absorption 

 

 Most of ingested lipids come in the form of triacylglycerols and must be degraded 

so they can be absorbed in the intestinal epithelium (illustration 14). Dietary 

triacylglycerols are emulsified in the small intestine lumen by bile salts, stored in the 

gallbladder, and hydrolyzed into FFAs and monoacylglycerol by water-soluble intestinal 

lipases, secreted by the pancreas. These products cross the intestinal mucosa, where they 

are reconverted to triacylglycerols and are incorporated, along with cholesterol and 

apolipoproteins, into lipoprotein transport particles known as chylomicrons (Berg et al., 

2012; Lehninger et al., 2008). 

Illustration 13. The full oxidation of a polyunsaturated fatty acid involves the action of an 

isomerase and a reductase.  

 

Adapted from Lehninger et al. (2008) 
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 Chylomicrons are released into the lymphatic system and then into the blood, 

which transports them to muscle and adipose tissue. On the capillaries, apolipoprotein C-

II present in chylomicrons activates lipoprotein lipase, which hydrolyses triacylglycerols 

to FAs and glycerol. The FAs can then be taken by the target tissue cells, where they can 

be oxidized for energy (myocyte) or reesterified for storage as triacylglycerols (adipocyte) 

(Berg et al., 2012; Lehninger et al., 2008). 

 

 

 

 

 

 

Illustration 14. Absorption of dietary lipids in vertebrates. 

 

 

Adapted from Lehninger et al. (2008) 
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3.4. De Novo Synthesis 

 

 The excess dietary carbohydrates and proteins can be converted/recycled to FAs 

and then incorporated into triacylglycerols for storage in a process known as de novo 

synthesis. Generally, this endogenous lipogenic pathway for FA biosynthesis becomes 

unnecessary when the body’s lipid requirements are attained in the diet. Nevertheless, 

this synthesis is particularly important during embryonic development and lactation in 

mammary glands (Berg et al., 2012; Strable and Ntambi, 2010). 

 The final product of this synthesis is palmitate, a sixteen carbon SFA that is the 

precursor for the formation of other FAs in a task involving other enzymatic systems. De 

novo synthesis occurs in the cytoplasm of hepatic, renal and adipose tissue cells besides 

lactating mammary glands. This process can be divided into two distinct stages: activation 

of acetyl CoA and the set of reactions of the fatty acid complex (Berg et al., 2012). 

 

3.4.1. Activation – acetyl CoA carboxylation 

 

 The end-product of FA degradation, acetyl-CoA, is now the precursor and source 

of carbons for the synthesis of any FA while the reductant role is played by NADPH 

molecules. Therefore, the first step of de novo synthesis is to obtain acetyl CoA and its 

further activation (Berg et al., 2012). 

 Acetyl CoA is a common organic intermediate product of oxidation of pyruvate, 

FAs, amino acids and ketone bodies. Nevertheless, the mitochondrial membrane is 

impermeable to acetyl CoA. Acetyl CoA must be conjugated with oxaloacetate to form 

citrate, in a reaction catalyzed by citrate synthase (EC 2.3.3.1). Citrate can then be freely 

transferred to the cytoplasm through the citrate carrier (CiC). These mitochondrial 

transporters play an important intermediary metabolic role, connecting carbohydrate 

catabolism and lipogenesis, by facilitating an exchange flow of citrate and malate between 

the mitochondrial matrix and the cytosol, respectively (illustration 15). In fact, CiC helps 

citrate get through the permeable inner mitochondrial membrane, which is then 

transported by passive diffusion from the mitochondrial outer membrane to the cytosol 

through voltage dependent anion channels. In the cytoplasm, citrate is then cleaved to 

acetyl CoA and oxaloacetate, in a reaction catalyzed by ATP citrate lyase (EC 2.3.3.8.) 

In addition, cytosolic citrate can provide, via malic enzyme or NADP malate 

dehydrogenase (EC 1.1.1.40), reducing equivalents as NADPH molecules that are 

required in further lipogenesis phases. Nevertheless, most of required NADPH for FA 

synthesis comes from the pentose phosphate pathway (Gnoni et al., 2009). 
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 Carboxylation of acetyl CoA expresses the beginning of de novo synthesis, a 

reaction catalyzed by acetyl CoA carboxylase (ACC). This process is irreversible and 

results in the formation of the substrate malonyl CoA (illustration 16). ACC in animals is 

a single multifunctional polypeptide that has three functional domains (see illustration 

17): the biotin carboxylase, which activates a carboxyl group derived from 

hydrogencarbonate in an ATP-dependent reaction; the biotin carrier protein, which 

accepts the activated carboxyl group binding it to a nitrogen in the biotin ring; and the 

transcarboxylase, which is responsible for the transfer of the activated carboxyl group 

from the carboxybiotin intermediate to acetyl CoA yielding malonyl CoA (Berg et al., 

2012; Lehninger et al., 2008). 

Illustration 15. The metabolic key role played by the CiC providing a linkage between 

glycolysis and lipogenesis. HMGCoA, 3-hydroxy-3-methylglutaryl-CoA; PyC, pyruvate carrier. 

(a) Pyruvate dehydrogenase, (b) citrate synthase, (c) ATP-citrate lyase, (d) acetyl-CoA 

carboxylase, (e) fatty acid synthase, (f) 3-hydroxy-3-methylglutaryl-CoA reductase, (g) 

cytosolic malate dehydrogenase, (h) mitochondrial malate dehydrogenase, (i) malic enzyme. 

 

Illustration 16. The first step of de novo synthesis comprises the carboxylation of acetyl CoA 

into malonyl CoA. 

 

Adapted from Gnoni et al. (2009) 

Adapted from Berg et al. (2012) 
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 This reaction is the rate-limiting step in FA synthesis, with ACC playing a key 

role in controlling the balance between oxidation and synthesis in the metabolism of FAs. 

Inactivation of ACC occurs by phosphorylation in an ATP-dependent reaction catalyzed 

by AMPK that dissociates the polypeptide into monomeric subunits which causes loss of 

activity (see illustration 18). AMPK works has a fuel gauge since it’s activated by AMP 

and inhibited by ATP. Therefore, in circumstances of low cellular energy levels, cells 

tend to stop synthesizing new lipids. On the other hand, protein phosphatase 2A (EC 

3.1.3.16) catalyzes the inverse reaction, the activation of ACC by dephosphorylation 

(Berg et al., 2012; Lehninger et al., 2008). 

   

Illustration 17. The acetyl CoA carboxylase is a three subunit polypeptide that mediates the 

carboxylation of acetyl CoA to malonyl CoA.  

 

Adapted from Lehninger et al. (2008) 
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 The flow of precursors into malonyl CoA can also be regulated by hormones and 

substrates (illustration 19). Citrate stimulates allosterically ACC activity. High levels of 

citrate induce polymerization of inactive subunits that can partly reverse the inhibition 

produced by phosphorylation. On the other hand palmitoyl CoA, the main product of FA 

synthesis, inhibit ACC activity by causing the same effects as phosphorylation, 

dissociating the ACC polypeptide into inactive subunits. Palmitoyl CoA also limits FA 

synthesis by inhibiting CiC, preventing the entry of citrate from the mitochondria into the 

cytosol. Glucagon and epinephrine, under conditions of fasting and exercise, stimulate 

the mobilization of FAs from triacylglycerols in cell depots which will be used as urgent 

energy source. These hormones also inhibit FA synthesis by inhibiting acetyl CoA 

carboxylase and though the exact mechanisms are not yet entirely understood, it is 

recognized that they enhance the inhibition provoked by the activity of AMPK by 

phosphorylating ACC (Berg et al., 2012; Lehninger et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

Illustration 18. Regulation of acetyl CoA carboxylase by phosphorylation/dephosphorilation. 

 

Illustration 19. Control on the FA biosynthesis by hormonal triggers and other substrate factors.  

 

Adapted from Berg et al. (2012) 

Adapted from Lehninger et al. (2008) 
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 FA synthesis and oxidation are opposite operations that, if performed 

simultaneously, would result in a nonsense wasting energy strategy. Therefore, these two 

major lipid metabolic processes have to be permanently and tightly regulated. For 

example, the first intermediate product of the activation of acetyl CoA in de novo 

synthesis, malonyl CoA, is responsible for inhibiting the key transporter in β-oxidation, 

carnitine acyltransferase I, preventing the formation of the intermediate acyl carnitine 

(Berg et al., 2012; Lehninger et al., 2008). 

 

3.4.2. Reactions of the Multi Enzymatic Fatty Acid Synthase (FAS) Complex 

 

 Long carbon chain FAs are assembled in multiple repeated four-step cycles 

comprehending: condensation, reduction, dehydration, and reduction (see illustration 20). 

Each cycle yields two carbon atoms to the acyl chain, which is the substrate for the next 

cycle with an activated malonyl CoA group. For the complete synthesis of palmitate 

(C16:0) the cycle must be repeated seven consecutive times (Berg et al., 2012; Lehninger 

et al., 2008). 

 These reactions are operated by a multifunctional enzyme complex, fatty acid 

synthase (FAS, EC 2.3.1.85). This enzyme is a dimer of identical 270 kDa subunits. Each 

subunit presents a set of seven successive enzymes and a protein, acyl carrier protein 

(ACP), that together make up a fully functional enzymatic system capable of synthesizing 

a 16 carbon SFA (Berg et al., 2012; Lehninger et al., 2008). 

 ACP is responsible for coordinating and carrying the reaction intermediates 

throughout the several enzymes active sites in each cycle. The bond of ACP to the 

intermediates is similar to the one that occurs in FA degradation between CoA and the 

intermediates. On both cases, the intermediates are linked to the sulfhydryl terminus of a 

phosphopantetheine group. In ACP this group is attached to a serine residue (Berg et al., 

2012; Lehninger et al., 2008). 

 Elongation stage starts with the linkage of acetyl CoA and malonyl CoA to ACP. 

This reaction, catalyzed respectively by acetyl transacylase and malonyl transacylase (or 

malonyl-acetyl transferase), results in the formation of acetyl ACP and malonyl ACP. In 

both reactions coenzyme A is released (Berg et al., 2012; Lehninger et al., 2008), as we 

can see in the following reactions: 
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Illustration 20. The basic steps of one cycle in FA synthesis. 

 

Adapted from Berg et al. (2012) 
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 The condensation reaction is catalyzed by β-ketoacyl synthase and comprises the 

formation of acetoacetyl ACP from the reaction of acetyl ACP with malonyl ACP where 

CO2 is also released (Berg et al., 2012; Lehninger et al., 2008): 

 

 

 This reaction is known as condensation reaction because it results in the formation 

of a four carbon compound from a two and three carbon units, acetyl ACP and malonyl 

ACP, respectively (Berg et al., 2012). 

 In the next step, acetoacetyl ACP undergoes reduction of the carbonyl group at C-

3 to form D-3-hydroxybutyryl ACP, a reaction catalyzed by β-ketoacyl reductase where 

NADPH acts as an electron donor. This reaction opposes the one occurring in FA 

degradation and exemplifies the principle that NADPH is consumed in biosynthetic 

reactions and NADH is generated in energy-yielding reactions (Berg et al., 2012). 

 The third step requires the deletion of water elements present in C-2 and C-3 of 

D-3-hydroxybutyryl ACP to yield a double bond, resulting in the formation of trans-Δ2-

enoyl ACP or crotonyl ACP. This dehydration reaction is catalyzed by 3-hydroxyacyl-

ACP dehydratase (Berg et al., 2012; Lehninger et al., 2008). 

 The completion of one cycle is concluded with a second reduction reaction in the 

double bond location of crotonyl ACP, which is reduced to butyryl ACP. This reaction is 

catalyzed by enoyl ACP reductase and again uses NADPH as reductant (Berg et al., 2012; 

Lehninger et al., 2008). 

 The resultant four carbon compound of the first round of FA synthesis, butyryl 

ACP, is the main substrate for the second cycle that starts by condensing it with malonyl 

ACP to form C6-β-ketoacyl ACP, a reaction much similar to the one in the first cycle. The 

elongation cycles continue until C16 acyl ACP is produced and, at that moment, a 

thioesterase hydrolyzes this intermediate producing palmitate and ACP. One molecule of 

H2O is consumed to break this bond (Berg et al., 2012; Lehninger et al., 2008). 

 The overall reaction for the synthesis of palmitate, from acetyl CoA already 

present in the cytosol, can be expressed by the following equation (Berg et al., 2012): 

 

8 acetyl CoA + 7 ATP + 14 NADPH + 14 H+ → Palmitate + 8 CoA + 7 ADP + 7 Pi + 14 

NADP+ + 6 H2O 
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3.5. Biosynthesis of Long-Chain SFAs, MUFAs and PUFAs 

 

 Further elongation and unsaturation of FAs are achieved by accessory enzymatic 

systems on the precursor palmitate (illustration 21). Longer FAs such as stearate (C18:0) 

and others are produced in reactions catalyzed by enzymes located in the cytoplasmic face 

of the endoplasmic reticulum membrane. These enzymes, known as elongases, are 

responsible for adding two-carbon units to the carboxyl ends of the acyl substrates. In 

these reactions, CoA rather than ACP is the acyl carrier, but the sequence of events is 

similar to that in palmitate synthesis. Condensation occurs again by decarboxylation of 

malonyl CoA that remains the two-carbon donor which precedes reduction, dehydration 

and reduction (Berg et al., 2012; Hussain et al., 2013; Lehninger et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 21. Biosynthesis of MUFAs and PUFAs derive from palmitate synthesis with 

accessory enzyme systems. FAs shaded pink cannot be produced by mammals and have to be 

ingested in the diet. 

 

Adapted from Lehninger et al. (2008) 
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 Working cooperatively with elongases in the production of various MUFAs and 

PUFAs are another group of enzymes known as desaturases (EC 1.14.19). These enzymes 

catalyze the introduction of a C-C double bond in different locations of the aliphatic chain 

of an acyl CoA substrate (Berg et al., 2012; Hussain et al., 2013; Lehninger et al., 2008). 

 In humans, for example, four families of desaturases are fully documented: Δ9 

desaturase (EC 1.14.19.1), mainly responsible for the production of two of the most 

common MUFAs, palmitoleic and oleate, establishing a double bond between C-9 and C-

10; and Δ4, Δ5, Δ6 desaturases which are responsible for introducing double bonds in the 

carbon positions 4, 5 and 6, respectively (Hussain et al., 2013). 

 MUFAs are formed in mammalian systems by direct oxidative desaturation in 

which the removal of two hydrogen results in the formation of a double bond (Berg et al., 

2012; Lehninger et al., 2008; Vance and Vance, 2008). 

 Conversion of stearoyl CoA into oleoyl CoA, for example, is a complex process 

mediated by three proteins located in the endoplasmic reticulum membrane (NADH-

cytochrome b5 reductase, cytochrome b5 and a desaturase) that requires an electron donor 

such as NADH or NADPH and molecular oxygen (Berg et al., 2012; Lehninger et al., 

2008; Vance and Vance, 2008): 

stearoyl CoA + NADH + H+ + O2 → oleoyl CoA + NAD+ + 2 H2O 

 The reaction involves an electron transport system that starts by the transfer of 

electrons from NADPH to the FAD present on the enzyme NADH-cytochrome b5 

reductase, reducing it to FADH2 (illustration 22). The heme iron (III) atom of cytochrome 

b5 can then be reduced to iron (II) which provokes a conversion of the nonheme iron (III) 

atom of the desaturase, in this case Δ9 desaturase or stearoyl CoA desaturase (SCD), into 

iron (II). SCD can now react with O2 and the saturated acyl CoA substrate that in this case 

is stearoyl CoA. Besides the formation of a double bond in C-9 present in oleoyl CoA, 

this reaction also releases two H2O molecules. In this desaturation process, the rate-

limiting factor is SCD (Berg et al., 2012; Lehninger et al., 2008; Ren et al., 2004; Vance 

and Vance, 2008). 

Illustration 22. The desaturation of a FA involves an electron-transport chain.                     

Adapted from Vance and Vance (2008) 



Chapter II. Literature Review 

32 

 

 MUFAs synthesized by SCD, namely palmitoleate (16:1, Δ9) and oleate (18:1, Δ9), 

are then used as substrates for the synthesis of various lipid classes including 

phospholipids, triacylglycerols and cholesteryl esters (Vance and Vance, 2008). 

 Mammalian hepatocytes cannot establish double bonds beyond the C-9 position 

of fatty acids. Therefore mammals cannot convert linoleate (18:2, Δ9, 12), or α-linolenate 

(18:3, Δ9, 12, 15) which are required in the diet as essential FAs because they are necessary 

precursors for the synthesis of other products (Hussain et al., 2013; Lehninger et al., 2008). 

 

 

4. Fatty Acid Synthase 

 

4.1. Structure and Activity of the Mammalian FAS Complex 

 

 Fatty acid synthase multienzyme complex is a dimer composed of identical 270-

kD multifunctional polypeptides that occurs in living organisms in two distinct types, 

FAS I and FAS II. The first can be found in vertebrates and fungi while the latter is present 

on plants and bacteria (Lehninger et al., 2008). 

 While in type II systems every catalytic function is provided by individual 

enzymes, in type I all necessary catalytic centers are aggregated in a single polypeptide 

chain. In the mammalian FAS I, for example, seven active sites for different reactions lie 

in separate domains, with each catalytic site participating in the last step of de novo 

synthesis (illustration 23). Therefore, within each monomeric subunit, seven active 

domains can be found: malonyl-acetyl transferase (MAT); ketoacyl synthase (KS); 

ketoacyl reductase (KR); dehydratase (DH); enoyl reductase (ER) and thioesterase (TE), 

besides ACP for transport of acyl conjugates throughout each catalytic center  (Berg et 

al., 2012; Maier et al., 2008) (illustration 24). 

 The overall swine FAS structure described by Maier et al. (2008) identifies two 

additional nonenzymatic domains: a pseudo-ketoreductase and a peripheral pseudo-

methyltransferase. These residual structures are thought to be of an ancestral 

methyltransferase domain that can still be found in polyketide synthases, a class of 

multienzymatic complexes that produce secondary metabolites known as polyketides 

such as erythromycin. Nevertheless, the ACP and TE domains are still undetermined in 

pigs. 

 Each monomer adopts a coiled conformation allowing multiple intra- and inter-

monomer functional domain interactions with the KS domains located in the central core 

of the structure. In mammals, MAT is a bifunctional protein domain that catalyzes the 
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transfer of malonyl and acetyl groups from malonyl CoA and acetyl CoA to ACP, 

respectively (Maier et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As shown in chapter 3, FAS plays a central role in energy homeostasis by 

converting excess dietary consumption into storage lipids that can later provide energy 

via β-oxidation. 

 FAS activity can be found almost in every tissue, though higher enzymatic 

expression levels can only be found within lipogenic tissues, namely in adipocytes, 

hepatocytes and lactating mammary glands (Jayakumar et al., 1995). 

Illustration 24. Front view and linear 

organization schemes of the mammalian 

FAS with respective catalytic sites colored.  

Illustration 23. Final cyclic reaction in palmitate synthesis mediated by FAS complex.      

 

Adapted from Maier et al. (2006) 

Adapted from Maier et al. (2008) 

Linker domains (LD) are highlighted in gray. 

DH1 and DH2 represent two dehydratase 

modules, however, only one is active. 
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 In humans, its expression is upregulated by diet carbohydrates, particularly by 

simple sugars. This occurrence is particularly noticeable after a fasting period. This 

regulation occurs mostly at a pretranslational phase by controlling mRNA levels. This 

stimulation is highly associated with insulin since FASN mRNA levels do not increase in 

diabetic rats and, on the contrary, an increase on FASN expression can be found in hyper-

insulinemian rat livers. On the other hand, glucagon suppresses FASN transcription 

through cAMP-dependent mechanisms (Hopperton, 2012; Semenkovich, 1997). 

Fatty acid synthesis in the liver and adipose tissues is strongly decreased by small 

amounts of exogenously supplied fatty acids. Furthermore, dietary/exogenous PUFAs 

decrease FAS expression, particularly alpha-linolenic (C18:3, Δ9, 12, 15), docosahexaenoic 

(C22:6, Δ 4, 7, 10, 13, 16, 19), eicosapentaenoic (C20:5, Δ 5, 8, 11, 14, 17) and arachidonic (C20:4, 

Δ 5, 8, 11, 14), which have been shown to suppress FAS expression in the liver and adipose 

tissue (Hopperton, 2012; Semenkovich, 1997). 

In non-lipogenic tissues, FASN expression is modulated through hormonal 

signaling. Besides insulin and glucagon, thyroid hormone and glucocorticoids increase 

FASN expression. Furthermore, estrogen and progesterone are also associated with 

elevated FASN expression. Transcription factors such as sterol regulatory element 

binding protein 1-c (SREBP1-c) mediate the regulation of FAS transcription by hormonal 

signals (Hopperton, 2012; Semenkovich, 1997). 

 Various compounds have been discovered and designed to inhibit FASN 

expression with the particular interest as anti-obesity drugs and for antitumoral treatments. 

Cerulenin and its derivatives, particularly C75 and C93, are small designed molecules 

that have showed inhibitory effects on FASN, by targeting the ketoacyl synthase domain, 

besides significant antitumoral effects. Orlistat is an FDA approved anti-obesity drug that 

inhibits FASN expression, by binding and inhibiting the thiosterase domain activity. 

Other inhibitors of FASN activity include epigallocatechine-3-gallate (EGCG) and other 

natural flavonoids (Hopperton, 2012; Liu, 2008; Loftus et al., 2000). 

 Clop et al. (2003) proposed FASN as candidate gene for FA composition. Ever 

since, more and more studies have pointed out the potential influence of this gene SNPs 

on porcine FA composition and meat quality (Corominas et al., 2013; Kim et al., 2011; 

Maharani et al., 2012; Munoz et al., 2007; Munoz et al., 2003). 

 Other authors as Berndt et al. (2007) propose FASN to be as well a candidate gene 

for the study of metabolic disorders as obesity and type 2 diabetes because of its central 

role in FA lipogenesis. They have shown that increased FASN expression in adipose 

tissue is associated to excess energy intake and accumulation of body fat. Furthermore, 

they state that adipose FASN mRNA expression might significantly mislead insulin 

sensitivity and circulating adipokine patterns. 

 



Chapter II. Literature Review 

35 

 

4.2. FAS gene sequence and polymorphisms 

 

Eukaryotic genes are organized in exons and introns. Exons are the sequences that 

encode for the protein, while introns are non-expressed sequences that get removed during 

maturation of pre-mRNA. 

Genetic polymorphisms on coding sequences (exons) are occurrences that induce 

genetic variation, adaptation and biodiversity. SNPs are the most common genetic 

variations in which a single nucleotide is substituted, deleted or added in the transcribed 

sequence. These polymorphisms may affect the overall expression of the triplet (non-

synonymous SNPs) or not (synonymous SNPs) (Kimball, 1994). 

FASN is a highly conserved gene among mammals. Swine (Sus scrofa) FASN 

(accession number NM_001099930.1) shares 85% of identity with that of the cow (Bos 

taurus) (accession number: NM_001012669.1) and of the goat (Capra hircus) (accession 

number DQ223929.1), 83% with humans (Homo sapiens) (accession number 

NM_004104.4) and 79% with mouse (Mus musculus) (accession number AF127033.1) 

with 93% sequence coverage. 

 The main objective of this work was to obtain the coding FASN sequence in AL 

pigs in subcutaneous adipose tissue and to compare it with that of the domestic pig (Sus 

scrofa). To our knowledge, there is no information regarding the genomic organization 

of genes of lipogenic enzymes in the obese AL pig, including fatty acid synthase. 

Bibliographic references are also scarce. 
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III. MATERIAL AND METHODS 

 

 

1. Slaughter conditions and tissue collection 

 

 The purebred Alentejano pig from where biological samples were collected was 

fed a commercial diet (Proibérico 2, Provimi, Alverca, Portugal). The specific 

composition of this diet is proprietary information. The commercial diet provided 150 

g/kg crude protein, 30 g/kg crude fat (with ~60% of oleic and linoleic acids), and 13.0 MJ 

digestible energy. 

 Samples were collected from one purebred AL pig (P) in an industrial 

slaughterhouse. This animal was killed at 100 kg BW by electronarcosis and bleeding. 

Tissue samples were obtained from subcutaneous adipose tissue, snap frozen in liquid 

nitrogen and stored at -80 ºC until analysis.   

  

2. RNA extraction 

 

 Total RNA extraction from the collected subcutaneous adipose tissue (SUB) was 

performed using the commercial GeneJET™ RNA Purification Kit (Thermo Scientific). 

Up to 100 mg of tissue were disrupted using a conventional rotor-stator homogenizer, 

Precellys® Minilys (Bertin Technologies), in a 10 s at 5000 rpm two cycle program with 

a 10 s rest time between cycles, following the manufacturer’s instructions. Assessment of 

total RNA integrity was performed using a NanoDrop® 2000 Uv-Vis Spectrophotometer 

(Thermo Scientific) at 260 nm and purified RNA was stored at -80 ºC until use. 

 

3. Complementary DNA synthesis 

 

 The first strand cDNA synthesis reaction, namely Reverse Transcription (RT) 

reaction, was performed according to Maxima® First Strand cDNA Synthesis Kit for RT-

qPCR reactions (Thermo Scientific). This commercial kit produces cDNA with both oligo 

(dT)18 and random hexamer primers. The resulting cDNA product was stored at -20 ºC 

until usage. 
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4. cDNA Amplification by PCR 

 

 Amplification by polymerase chain 

reaction (PCR) enables a fast and convenient 

acquirement of multiple specific DNA pieces, 

set by a pair of oligonucleotide primers that flank 

the target sequence region. 

 Briefly, PCR reactions stand for multiple 

repeated cycles of heating, cooling and heating, 

allowing denature of double stranded DNA, 

binding of primers and synthesis of 

complementary DNA by a Taq polymerase, 

respectively, that generate countless double 

stranded target DNA sequence molecules 

(illustration 25). 

 In RT-PCR in particular, the first PCR 

cycle starts with denaturation of the molecule 

produced in reverse transcription, a double 

stranded molecule of RNA and complementary 

DNA, therefore, only one DNA template is 

yielded. 

 All PCR reaction were programmed and 

performed in a MyCycler™ Thermal Cycler 

(Bio-Rad). 

 

 

 

4.1. Sequencing Strategy 

 

 The Sus scrofa FASN complete coding sequence (cds) was retrieved from NCBI 

database, with the reference number NM_001099930.1 as guidance for the AL pig 

sequencing strategy. Then, specific target regions were conceived for consecutive partial 

sequencing of the gene based on sets of primers available on literature and newly designed 

ones (illustration 26). For amplification and cloning of the 5’ and 3’ ends, rapid 

amplification of cDNA end’s (RACE) technique was performed. 

       Repeat the cycle 35 times 

Illustration 25. The basic steps in polymerase 

chain reaction; DNA denaturation, primer 

annealing and extension. 

 

Adapted from Brown (2010) 
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4.2. Primer Design 

 

 Little was found in current literature about Sus scrofa FASN sequencing strategies 

and specific primer sequences, nevertheless, five pairs of previously described primer 

sequences were fully tested, namely FAS S/AS (Huang et al., 2007), FASN1-

FW/FASN1-RV and FASN2-FW/FASN2-RV (Munoz et al., 2003), FASN39-

FW/FASN39-RV and FASN40-FW/FASN40-RV (Kim et al., 2011). Still, only the latter 

two pairs gave products successfully amplified and sequenced. 

 Since there weren’t much swine FASN primer sequences available in current 

literature, several sets of primer pairs were designed using specific Biosoftware tools such 

as Primer3Web version 4.0.0, NetPrimer (PREMIER Biosoft) and BioEdit Sequence 

Alignment Editor Version 7.1.7. All primers that successfully amplified FASN gene 

sequences are listed and described on table 2. For a complete list of tested primers check 

appendix I (Hall, 1999; Untergasser et al., 2012). 

 

Table 2. Complete list of primers used in FASN sequencing along with respective sequence, gene 

location regarding to swine FASN record NM_001099930.1 on GenBank, annealing temperature and 

amplified product size. 

Primer 

Designation 

Gene 

Location 

(bp) 

5’ 3’ Sequence 

Annealing 

Temperature 

(ºC) 

Amplified 

Product 

size (bp) 

FAS D FW 4881-4902 CCACCTCTGTTCTGCTGCTTCA 
65 685 

FAS D RV 5546-5565 CAGGGCAAGCACATAGGCAA 

FAS L FW 5393-5415 ATCCTGCTGGACTCGCTCTTTGA 
65 783 

FAS L RV 6158-6175 CGGCACGACGGGCTCCCA 

FAS Q FW 6108-6130 CCAACTACGGCTTCGCCAACTCT 
65 660 

FAS Q RV 6746-6767 CGATGGGGTGGACCAGGAACAG 

FASN exon39-FW 6615-6631 CGGCGACTCCCACATCC 
60 431 

FASN exon39-RV 7025-7045 GAAGGTGTGTGAGCCGTCGAA 

FASN exon40-FW 6908-6928 CCCGAGGGGCCTTACCGCATC 
60 378 

FASN exon40-RV 7268-7285 GAAGGAGCGAGCGGCGAA 

FAS F FW 7015-7035 CCTCTTCCTGTTCGACGGCTC 
58 497 

FAS F RV 7490-7511 TGTGGATGATGCTGAGGATGGA 

Illustration 26. Partial sequencing strategy for the fatty acid synthase gene. 

L Exon 39 

 3’ 5’ 

Exon 40 Q 

F 

D 
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4.3. PCR Protocol Optimization 

 

 PCR reactions were performed with multiple conditions and reagents in PCR 

specific tubes. 

DNA fragment “D” amplification was assembled with: 0.3 mM of a 

deoxynucleotide triphosphates (dNTPs) mixture, 0.2 µM of each primer, 50 ng of DNA 

template, 1x DreamTaq buffer (containing optimized concentrations of KCl and 

(NH4)2SO4 and 2 mM MgCl2) and 2.5 U of DreamTaq DNA Polymerase (Thermo 

Scientific) in a total reaction volume of 50 µL. The amplification program executed was: 

94 ºC for 3 min; followed by 35 cycles of 94 ºC for 45 s, 65 ºC for 50 s and 60 s at 72 ºC; 

a final extension step at 72 ºC for 10 min was also performed. 

DNA fragment “L” amplification was assembled with: 0.3 mM of a dNTPs 

mixture, 0.2 µM of each primer, 50 ng of DNA template, 1x DreamTaq buffer (containing 

optimized concentrations of KCl and (NH4)2SO4 and 2 mM MgCl2) and 2.5 U of 

DreamTaq DNA Polymerase (Thermo Scientific) in a total reaction volume of 50 µL. The 

amplification program executed was: 94 ºC for 3 min; followed by 35 cycles of 94 ºC for 

45 s, 65 ºC for 50 s and 60 s at 72 ºC; a final extension step at 72 ºC for 10 min was also 

performed. 

 DNA fragment “Q” amplification was assembled with: 0.3 mM of a dNTPs 

mixture, 0.2 µM of each primer, 50 ng of DNA template, 1x DreamTaq buffer (containing 

optimized concentrations of KCl and (NH4)2SO4 and 2 mM MgCl2) and 2.5 U of 

DreamTaq DNA Polymerase (Thermo Scientific) in a total reaction volume of 50 µL. The 

amplification program executed was: 94 ºC for 3 min; followed by 35 cycles of 94 ºC for 

45 s, 65 ºC for 50 s and 60 s at 72 ºC; a final extension step at 72 ºC for 10 min was also 

performed. 

 DNA fragment “exon39” amplification was assembled with: 0.2 mM of a dNTPs 

mixture, 0.3 µM of each primer, 46 ng of DNA template, 20 mM Tris-HCl (pH 8.4), 50 

mM KCl, 1.5 mM MgCl2 and 2.5 U of Taq DNA Polymerase (Invitrogen) in a total 

reaction volume of 50 µL. The amplification program used was: 94 ºC for 5 min; followed 

by 35 cycles of 94 ºC for 45 s, 60 ºC for 45 s and 60 s at 72 ºC; at the end the reaction 

was submitted to a final extension step at 72 ºC for 5 min. 

 DNA fragment “exon40” amplification was assembled with: 0.2 mM of a dNTPs 

mixture, 0.3 µM of each primer, 46 ng of DNA template, 20 mM Tris-HCl (pH 8.4), 50 

mM KCl, 1.5 mM MgCl2 and 2.5 U of Taq DNA Polymerase (Invitrogen) in a total 

reaction volume of 50 µL. The amplification program used was: 94 ºC for 5 min; followed 

by 35 cycles of 94 ºC for 45 s, 60 ºC for 45 s and 60 s at 72 ºC; at the end the reaction 

was submitted to a final extension step at 72 ºC for 5 min. 

 DNA fragment “F” amplification was assembled with: 0.3 mM of a 

deoxynucleotide triphosphates (dNTPs) mixture, 0.2 µM of each primer, 59 ng of DNA 
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template, 1x DreamTaq buffer (containing optimized concentrations of KCl and 

(NH4)2SO4 and 2 mM MgCl2) and 2.5 U of DreamTaq DNA Polymerase (Thermo 

Scientific) in a total reaction volume of 50 µL. The amplification program executed was: 

94 ºC for 2 min; followed by 35 cycles of 94 ºC for 30 s, 58 ºC for 50 s and 60 s at 72 ºC; 

a final extension step at 72 ºC for 10 min was also performed. 

 Further PCR products (for amplification of different gene fragments) were tested 

with different conditions and reagents, particularly: annealing temperature ranging 50-70 

ºC; extension time ranging 60-360 s; different MgCl2 concentrations; different primer and 

dNTPs concentrations and Taq polymerases (mainly DreamTaq DNA Polymerase 

(Thermo Scientific), Taq DNA Polymerase (Invitrogen), Taq DNA Polymerase (Thermo 

Scientific), Supreme NZYTaq DNA polymerase (NZYTech), NZYTaq DNA polymerase 

(NZYTech) and NZYTaq 2x Green Master Mix (NZYTech)). 

 Adding bovine serum albumin (BSA) and dimethyl sulfoxide (DMSO) in the PCR 

reaction mixtures was also tested. Moreover, primers of different sets were paired and 

tested to attempt amplification of longer products. 

 

5. Electrophoresis and Purification of PCR products 

 

 In order to separate PCR products a 1% (w/v) agarose gel electrophoresis was 

performed. This universal technique can isolate different length DNA fragments, enabling 

a qualitative and quantitative overview of the amplified product when compared with a 

DNA ladder marker. 

 Tris-Borate-EDTA (TBE) 0.5X buffer (50 mM Tris, 45 mM boric acid, 0.5 mM 

EDTA, pH 8.5) was used as electrophoresis buffer. PCR samples were loaded with 1X 

Orange DNA Loading Dye (100 ml: 400 mg Orange G, 40 mg sucrose) and 1X GelRed™ 

Nucleic Acid Gel Stain (Biotium). NZYDNA Ladder Marker III (NZYTech) was used as 

molecular marker. Gels ran for 1 - 2 h at 80 V and were visualized and photographed 

under UV light using a Kodak DC 120 camera (Sambrook et al., 1989). 

 Expected product size bands were sliced out of the gel, when the product 

contained unspecific. 

 DNA purification and concentration was performed using illustra™ GFX™ PCR 

DNA and Gel Band Purification Kit (GE Healthcare) for both direct purification from a 

PCR mixture or TBE agarose gel slice. The protocol is straightforward and includes the 

basic principles of sample capture, sample binding, wash and dry terminating with an 

elution step. Purified DNA was stored at -20 ºC until used. 

 An additional electrophoresis was performed after purification in order to confirm 

purified DNA integrity. 
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6. Cloning of PCR products 

 

 Modern genetic engineering techniques, particularly gene cloning, offer a rapid 

and efficient way to sequence target genes based on recombinant DNA technology. Gene 

cloning consists on the process of making copies or clones of a single target gene by 

assembling DNA recombinant molecules and replicating them in a host organism (see 

illustration 27). 

 

 First, recombinant strands of DNA are to be made where plasmids are often used 

as vectors to transport the genes of interest to host cells. 

 Transformation is the process that comprises the transmission of the plasmid into 

a new host cell. This step requires that the host cells become “competent” in order to 

temporarily allow the entrance of extra DNA material; this can easily be achieved by a 

sudden change in environmental conditions such as temperature. 

Illustration 27. The basic steps of gene cloning.  

Adapted from Brown (2010) 
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 Escherichia coli (E. coli) are commonly used as hosts for DNA cloning and 

sequencing. Upon transformation of E. coli with a recombined vector carrying a gene of 

interest, the bacteria multiply the gene of interest while maintaining the integrity of its 

content. 

 Detection of transgenic cells is generally accomplished by expression of antibiotic 

resistance genes carried by the plasmids. Another common way of selection depends on 

the presence of proteins such as the X-Gal/ lacZ system. 

 

6.1. Cloning vectors 

 

6.1.1. pGem®-T Easy Vector cloning system 

 

 The pGEM®-T Easy Vector (Promega) is a high copy cloning vector with ca. 3.0 

Kb of double stranded linearized DNA. This vector includes a gene for antibiotic 

resistance to ampicillin (Ampr) and a gene for the enzyme β-galactosidase (lacZ) that 

contains the cloning site (illustration 28).  

 

 

 

  

 

 

 

 

 

 

Cloning with this vector involves selection of transformants on ampicillin agar as 

well as screening for β-galactosidase activity to identify recombinants. 

Illustration 28. pGEM®-T Easy Vector Map and points of interest, namely, Ampr and lacZ gene 

locations. 

 

Adapted from pGEM®-T and pGEM®-T Easy Vector Systems 
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 β-galactosidase is an enzyme that hydrolyzes a β-glycosidic bond as in lactose 

degradation producing galactose and glucose. In the presence of X-Gal (5-bromo-4-

chloro-3-indolyl-β-D-galactopyranoside), a lactose analog, the enzyme cleaves this 

specific bond inducing the production of galactose and 5-bromo-4-chloro-3-

hydroxyindole. This compound is subsequently transformed into 5,5’-dibromo-4,4’-

dichloro-indigo, via dimerization and oxidation, an insoluble blue product. 

 The expression of lacZ gene is induced by the lactose analog promoter IPTG 

(isopropyl-β-D-thiogalactopyranoside). The disruption of the lacZ gene by insertion of 

the desired DNA leads to white colonies defining lack of enzyme activity. On the other 

hand, blue colonies stand for non-recombinant bacteria that synthesized β-galactosidase 

and degraded X-Gal. 

 

6.1.2. NZY-A PCR cloning kit 

 

 The pNZY28-A (NZYTech) is a high copy cloning vector with ca. 2.88 kb of 

double stranded linearized DNA that includes a gene for antibiotic resistance to ampicillin 

(Amp) and a lacZ gene. The cloning site is located in the lacZ gene for easy detection of 

recombinants by screening for β-galactosidase activity as with pGEM®-T Easy Vector 

(Promega) (illustration 29). 

 

 

 

 

Illustration 29. pNZY28 map and points of interest, namely, Amp and lacZ gene locations. 

 

Adapted from NZY-A Speedy PCR cloning kit 
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6.2. Plasmid-Insert Ligation 

 

 Ligation mixtures were prepared on sterile, nuclease-free microcentrifuge tubes 

with 5 μL of buffer, 50 ng of vector, 3 U of T4 DNA ligase and up to a ratio of 3:1 of 

insert (insert:vector ratio), in a 10 μL reaction that was incubated for 1 h 30 min at 25 ºC. 

 

6.3. Transformation conditions 

 

 For E.coli transformation, JM109 competent cells (Promega) were used and 

manufacturer’s instructions were followed. 5 µL of ligation reaction were added for each 

50 µL of competent cells. The resultant mixture rested on ice for 20 min and was, then, 

subjected to a heat shock at 42 ºC for 45 s, before cooling for 2 min on ice. 950 μL of pre-

warmed SOC medium (2% tryptone, 0.5% yeast extract, 0.05% NaCl, 2.5 mM KCl, 10 

mM MgCl2, 20 mM glucose) were added to the mixture and the cells were left growing 

for 1 h 30 min at 37 ºC at 150 rpm on an orbital incubation shaker (Aerotron AG, HT 

Infors). 

 Cells were centrifuged at 1000 g for 10 min at room temperature and the resulting 

pellet was suspended in 70 μL of the supernatant, plated on low salt LB plates (1% 

tryptone, 0.5% yeast extract, 0.5% NaCl, pH 7.5, 1.5% agar) supplemented with 100 

μg/mL of ampicillin, 0.5 mM IPTG and 80 μg/mL X-Gal, for selection of recombinant 

clones, and incubated overnight at 37 ºC. 

 

6.4. Plasmid DNA extraction  

 

 Plasmid DNA was extracted from E. coli cells using GeneJET Plasmid Miniprep 

Kit (Thermo Scientific) following manufacturer’s instructions, after growing cells in low 

salt LB medium (1% tryptone, 0.5% yeast extract, 0.5% NaCl, pH 7.5) supplemented with 

100 μg/mL of ampicillin and grown overnight at 37 ºC at 150 rpm on an orbital incubation 

shaker (Aerotron AG, HT Infors). Extracted plasmid DNA was conserved at -20 ºC until 

use. 

 

7. Restriction Assay 

 

In order to confirm the selection of only proper recombinant clones, restriction 

assays were performed. 
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 Restriction enzymes generally bind onto a specific recognition sequence of a DNA 

molecule, and subsequently cleave it by making an incision at the phosphate backbone of 

the double helix structure avoiding damages to the bases (illustration 30).            

 

 FastDigest®EcoRI (Thermo Scientific) and FastDigest®NotI (Thermo Scientific) 

were the main restriction enzymes used. These endonucleases cut two specific regions of 

the plasmids, near the cloning site, allowing the linearization of the plasmid, plus the 

release of the cloned product (see points 6.1.1 and 6.1.2). Manufacturer’s instructions 

were followed and results were viewed by agarose gel electrophoresis as described in 

point 5. 

 

8. DNA Sequencing and Analysis 

              

 DNA sequencing reactions were performed by Macrogen (Netherlands). 

Sequence analysis was carried out using BioEdit Sequence Alignment Editor Version 

7.1.7. and MEGA6. ClustalW Multiple Alignment, NCBI Basic Local Alignment Search 

Tool (BLAST) program and CAP contig assembly program were the main tools executed 

(Altschul et al., 1997; Hall, 1999). 

 

9. Rapid Amplification of cDNA Ends 

 

 Previously described techniques bend to result in the acquisition of clones that 

represent only a part of the mRNA’s complete sequence. Both missing sequence ends 

need a proper approach. 

Illustration 30. Operation of restriction enzymes – EcoRI. 

 

Adapted from Klug (2012) 
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 Rapid amplification of cDNA ends (RACE) is a powerful and inexpensive 

technique used to obtain the full-length sequence of an RNA transcript. In RACE 

technique, a short internal stretch of sequence must already be known from the mRNA. 

From this sequence, specific primers are chosen that are oriented in the direction of the 

missing sequence. Extension of the partial cDNAs from the unknown end back to the 

known region is achieved using primers that anneal to the preexisting poly(A) tail (3'-end) 

or to an appended homopolymer tail (5'-end) (Frohman et al., 1988). 

 

9.1. 3’ RACE approach 

 

Amplification of 3’ ends takes advantage of the poly(A) tail present in the 

messenger RNA. This chain of adenines enables amplification by PCR using an oligo(dT) 

anchor primer, fully constituted of thymines and an internal primer from the nearest 

known location (a reverse transcription primer can be used) (illustration 31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Illustration 31. Summary of the FASN 3’ end amplification by RACE. 
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First, a RT reaction was performed with the extracted total RNA. Up to 3 µg of 

total RNA were converted in a final 20 µL reaction with 60 mM oligo d(T) anchor primer 

(table 3). Initial denaturation was achieved by a 5 min incubation at 70 ºC followed by 10 

min on ice. Then, reverse transcription was performed in 50 mM Tris-HCl pH 8.3, 75 

mM KCl, 3 mM MgCl2, 10 mM DTT, 0.5 mM dNTPs and with 40 U RNase Out 

(Invitrogen) and 200 U of M-MLV reverse transcriptase (Invitrogen), for 1 h at 37 ºC, 

followed by 10 min at 70 ºC for enzyme denaturation. 

 

Table 3. List of primers used for FASN 3’ end sequencing. 

 

 

For amplification of the FASN 3’ end region a PCR assay was designed with the 

following conditions: 20 mM Tris-HCl, pH 8.8, 10 mM (NH4)2SO4, 10 mM KCl, 0.1% 

Triton X-100, 0.1 mg BSA, 2 mM MgSO4, 0.2 µM of FAS F RV and Anchor T and 2.5 U 

of Pfu DNA Polymerase (Thermo Scientific) in a total reaction volume of 50 µL. The 

amplification program was: 94 ºC for 2 min; 10 cycles of 94 ºC for 15 s followed by 55 

ºC for 30 s and an extension time of 40 s at 72 ºC; 94 ºC for 15 s; 25 cycles of 94 ºC for 

15 s followed by 55 ºC for 30 s and an extension stage of 72 ºC for 40 s with an increment 

of 20 s each cycle; 72 ºC for 7 min. The product was analyzed in a 1% agarose gel that 

ran for 1 h 30 min at 70 V at constant voltage. Samples were prepared according to what 

is described in point 5. Expected product size bands were sliced and purified with 

illustra™ GFX™ PCR DNA and Gel Band Purification Kit (GE Healthcare) according 

to manufacturer’s instructions. Target DNA was cloned with pGEM®-T Easy Vector 

(Promega) and multiplied in an E. coli host as described in point 6. Multiple clones were 

obtained and sequenced as described in points 6, 7 and 8. However, none of the sequenced 

clones proved to be a successfully amplified FASN product. Furthermore, another attempt 

to sequence the FASN 3’ end was made using another primer named “FAS RACE 

3’“(Table 3), using the same conditions.  

 

 

 

 

 

Primer Designation Gene Location (bp) 5’ 3’ Sequence 

FAS F RV 7490-7511 TGTGGATGATGCTGAGGATGGA 

FAS RACE 3’ 7452-7477 CACCGCACGCTGCTGGAGGGC 

Oligo d(T) anchor NotI - AACCCGGCTCGAGCGGCCGCT18 

Anchor T - AACCCGGCTCGAGCGGCCGC 
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IV. RESULTS 

 

1. Fragment amplification detection 

 

 PCR amplification produced expected amplicons of the gene that were analyzed 

by agarose electrophoresis gels (illustration 32). Designated specific primers, originated 

previously calculated amplified products of about 430, 380 and 780 bp, respectively.   

 

 PCR products were cloned in pNZY28 (NZYTech) or pGEM®-T Easy Vector 

(Promega). Multiple clones of each were obtained and sequenced. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Illustration 32. Examples of amplicons generated in PCR assays using distinct primers observed by 1% 

agarose gel electrophoresis. 

  

                                 A: Lane M – NZYDNA Ladder Marker III (NZYTech), Lane 1 – 

PSUBexon39; B: Lane M – NZYDNA Ladder Marker III (NZYTech), Lane 1 – 

PSUBexon40; C: Lane M – NZYDNA Ladder Marker III (NZYTech), Lane 1– PSUBL. 
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2. Detection of the product after restriction assay 

 

 Restriction assays were performed in order to confirm the authenticity of the 

clones before sequencing. FastDigest®EcoRI (Thermo Scientific) and FastDigest®NotI 

(Thermo Scientific) were the main restriction enzymes used to digest the plasmid and 

release the cloned product. Results were observed by electrophoresis of 1% agarose gels 

(illustration 33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Molecular characterization of the sequenced results 

 

 Assembly of the final contig from the overlapping of the sequenced DNA 

segments was achieved using BioEdit and MEGA software. This sequence was compared 

to an available 8044 bp swine FASN sequence with the reference number 

NM_001099930.1 present on NCBI database and covered from 4903-7489 bp 

(illustration 34). The complete sequence of each successfully sequenced amplicon can be 

found in appendix II.  

Illustration 33. Example of an insert release gel after the restriction assay. 

Cloned product 

Empty plasmid 
3000 

1000 

600 

400 

Cloned product 

Empty plasmid 3000 

1000 

600 

400 

A B 

 M       1 

                                                                                                                              A: Lane M - NZYDNA 

Ladder Marker III (NZYTech); Lane 1 – PSUBL. B: Lane M – NZYDNA Ladder Marker III 

(NZYTech); Lane 1 – PSUBQ. 
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                             4910      4920      4930      4940      4950       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CACGCCACCTGGGAGGTGCCCTCCACCTGGACCCTGGAGGAGGCAGCGTC  

Sequence NM_001099930.1  ..................................................  

 

                              4960      4970      4980      4990      5000       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GGTGCCCATCGTCTACACGACGGCCTACTACTCGCTGGTGGTGCGAGGGC  

Sequence NM_001099930.1  ..................................................  

 

                              5010      5020      5030      5040      5050       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCATGCAGCCCGGGGAGTCGGTGCTCATCCACTCGGGCTCGGGCGGCGTG  

Sequence NM_001099930.1  ..................................................  

 

                              5060      5070      5080      5090      5100       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GGCCAGGCCGCCATCGCCATCGCCCTCAGCCGGGGCTGCCGCGTCTTCAC  

Sequence NM_001099930.1  ..................................................  

 

                              5110      5120      5130      5140      5150       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CACCGTGGGGTCGGCCGAGAAGCGGGCGTACCTCCAGGCCAGGTTCCCCC  

Sequence NM_001099930.1  ..................................................  

 

                              5160      5170      5180      5190      5200       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             AGCTCGACGAGACCTGCTTCGCCAACTCCCGCGACACGTCCTTTGAGCAG  

Sequence NM_001099930.1  ..................................................  

 

                              5210      5220      5230      5240      5250       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CACGTGCTGCGGCACACGGCCGGGAAGGGTGTCGACCTGGTCCTGAACTC  

Sequence NM_001099930.1  ..................................................  

 

                              5260      5270      5280      5290      5300       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CCTGGCGGAAGAGAAGCTGCAGGCCAGCGTGCGGTGTCTGGCCCAGCACG  

Sequence NM_001099930.1  ..................................................  

 

                              5310      5320      5330      5340      5350       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCCGCTTCCTGGAAATCGGCAAATTCGACCTTTCCAACAACCACGCCCTG  

Sequence NM_001099930.1  ..................................................  

 

                              5360      5370      5380      5390      5400       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GGCATGGCCGTCTTCCTGAAGAATGTGACCTTCCACGGGATCCTGCTGGA  

Sequence NM_001099930.1  ..................................................  

 

                              5410      5420      5430      5440      5450       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CTCGCTCTTTGAGGAGGGCGGCGCCACCTGGCAGGAGGTGTCGGAGCTGC  

Sequence NM_001099930.1  ..................................................  

 

                              5460      5470      5480      5490      5500       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             TGAAGGCGGGCATCCAGGAGGGCGTGGTGCAGCCGCTCAAGTGCACCGTG  

Sequence NM_001099930.1  ..................................................  

 

                              5510      5520      5530      5540      5550       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             TTCCCCAGGACCAAGGTGGAGGCCGCCTTCCGCTACATGGCCCAGGGCAA  

Sequence NM_001099930.1  ..................................................  

 

                              5560      5570      5580      5590      5600       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCACATAGGCAAAGTGGTCATCCAGGTGCGCGAGGAGGAGCAGGGGCCGG  

Sequence NM_001099930.1  ..................................................  

 

                              5610      5620      5630      5640      5650       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CGCCGCGCGGGCTGCCGCCCATCGCATTGACCGGCTTGTCCAAGACCTTC  

Sequence NM_001099930.1  ..................................................  
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                              5660      5670      5680      5690      5700       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             TGCCCCCCCCACAAGAGCTACGTCATCACCGGGGGCCTGGGCGGCTTCGG  

Sequence NM_001099930.1  ..................................................  

 

                              5710      5720      5730      5740      5750       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CCTGCAGCTGGCGCAGTGGCTCCGGCTGCGAGGGGCCCAGAAGCTGGTGC  

Sequence NM_001099930.1  ..................................................  

 

                              5760      5770      5780      5790      5800       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             TCACCTCCCGCTCGGGCATCCGCACAGGCTACCAGGCCAGGCAGGTCCGA  

Sequence NM_001099930.1  ..................................................  

 

                              5810      5820      5830      5840      5850       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GAGTGGAGACGCCAGGGCGTCCAGGTCCTGGTGTCCACCAGCAACGCCAG  

Sequence NM_001099930.1  ..................................................  

 

                              5860      5870      5880      5890      5900       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CTCGCTGGACGGCGCTCGGAGCCTCATCACTGAGGCCACACAGCTTGGGC  

Sequence NM_001099930.1  ..................................................  

 

                              5910      5920      5930      5940      5950       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CCGTGGGAGGCGTCTTCAACCTGGCCATGGTCCTGAGAGACGCCGTGCTG  

Sequence NM_001099930.1  ..................................................  

 

                              5960      5970      5980      5990      6000       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GAGAACCAGACCCCGGAGTTCTTCCAGGACGTCAGTAAGCCCAAGTACAG  

Sequence NM_001099930.1  ..................................................  

 

                              6010      6020      6030      6040      6050       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CGGCACCGCGAACCTGGACAGGGTGACCCGGGAGGCGTGTCCCGAGCTGG  

Sequence NM_001099930.1  ..................................................  

 

                              6060      6070      6080      6090      6100       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             ACTACTTCGTGATCTTCTCCTCCGTGAGCTGCGGGCGCGGCAATGCCGGC  

Sequence NM_001099930.1  ..................................................  

 

                              6110      6120      6130      6140      6150       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CAGGCCAACTACGGCTTCGCCAACTCTGCCATGGAGCGCATCTGCGAGAA  

Sequence NM_001099930.1  ..................................................  

 

                              6160      6170      6180      6190      6200       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCGCCGGCACGACGGGCTCCCAGGCCTCGCCGTGCAGTGGGGTGCGATCG  

Sequence NM_001099930.1  ..................................................  

 

                              6210      6220      6230      6240      6250       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCGACGTGGGCGTCGTCCTGGAGACCATGGGCACCAACGACACGGTCATC  

Sequence NM_001099930.1  ..................................................  

 

                              6260      6270      6280      6290      6300       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GGCGGGACGCTGCCCCAGCGCATCGCCTCCTGCCTGGAGGTGCTGGATCT  

Sequence NM_001099930.1  ..................................................  

 

                              6310      6320      6330      6340      6350       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CTTCCTGAGCCAGCCCCACCCCGTCCTGAGCAGCTTCGTCCTGGCTGAGA  

Sequence NM_001099930.1  ..................................................  

 

                              6360      6370      6380      6390      6400       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             AGAAGGCTGCCGCCCCCAGGGACGGCAGCAGCCAGAAGGACCTGGTCAAG  

Sequence NM_001099930.1  .......C..........................................  
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                              6410      6420      6430      6440      6450       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCCGTGGCTCACATCCTGGGCATCCGGGACGTGGCCTCCATCAATCCGGA  

Sequence NM_001099930.1  ..................................................  

 

                              6460      6470      6480      6490      6500       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CAGCACGCTGGTGGACCTGGGCCTGGACTCGCTCATGGGCGTGGAGGTGC  

Sequence NM_001099930.1  ..................................................  

 

                              6510      6520      6530      6540      6550       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCCAGATACTGGAGCGAGAGCACGACCTGGTGCTGTCCATGCGGGAGGTG  

Sequence NM_001099930.1  ..................................................  

 

                              6560      6570      6580      6590      6600       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CGGCAGCTCAGCCTCCGGAAGCTACAGGAACTCTCCTCGAAGACCAGCAC  

Sequence NM_001099930.1  ..................................................  

 

                              6610      6620      6630      6640      6650       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GGACGCCGACCCGGCGACTCCCACATCCAACGAGGACAGCCCTGTGCGGC  

Sequence NM_001099930.1  ............................C.....................  

 

                              6660      6670      6680      6690      6700       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             AGCAGGCAACGCTGAACCTGAGCACCCTGCTGGTGAACCTCGAGGGCCCG  

Sequence NM_001099930.1  .......................................C..........  

 

                              6710      6720      6730      6740      6750       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             ACCTTGACGCGGCTCAACTCCGTGCAGAGCGCAGAGCGGCCCCTGTTCCT  

Sequence NM_001099930.1  ..................................................  

 

                              6760      6770      6780      6790      6800       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GGTCCACCCCATCGAGGGCTCCATCACCGTGTTCCACGGCCTGGCCGCCA  

Sequence NM_001099930.1  ..................................................  

 

                              6810      6820      6830      6840      6850       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             AGCTCAGCATCCCCACCTACGGCCTGCAGTGCACGGGAGCCGCCCCGCTG  

Sequence NM_001099930.1  ..................................................  

 

                              6860      6870      6880      6890      6900       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GACAGCATCCAGAGCCTGGCCTCCTACTACATCGAGTGCATCAGACAGGT  

Sequence NM_001099930.1  ..................................................  

 

                              6910      6920      6930      6940      6950       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCAGCCCGAGGGGCCTTACCGCATCGCCGGCTACTCTTACGGGGCCTGCG  

Sequence NM_001099930.1  ..................................................  

 

                              6960      6970      6980      6990      7000       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             TGGCCTTCGAGATGTGCTCGCAGCTGCAGGCCCAGCAGAGCGCCACCCCC  

Sequence NM_001099930.1  ..................................................  

 

                              7010      7020      7030      7040      7050       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GGGAACCACAGCCTCTTCCTGTTCGACGGCTCACACACCTTCGTGCTGGC  

Sequence NM_001099930.1  ..................................................  

 

                              7060      7070      7080      7090      7100       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CTACACGCAGAGCGTCCGCGCTAAGATGACCCCCGGCTGCGAGGCCGAGG  

Sequence NM_001099930.1  ..................................................  

 

                              7110      7120      7130      7140      7150       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CCGAGGCCAAGGCCATGTACTTCTTCGTGCAGCAGTTCACCGACATGGAG  

Sequence NM_001099930.1  ..................................................  
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                              7160      7170      7180      7190      7200       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CAAGGCAAGGTGCTGGAGGCGCTGATACCGCTCCAGGGCCTGGAGGCGCG  

Sequence NM_001099930.1  ..................................................  

 

                              7210      7220      7230      7240      7250       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             CGTGGCGGCCACCGTGGACCTGATCACGCAGAGCCACGCGGGCCTGGACC  

Sequence NM_001099930.1  ..................................................  

 

                              7260      7270      7280      7290      7300       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCCACGCCCTCAGCTTCGCCGCTCGCTCCTTCTACCAGAAGCTGCGCGCC  

Sequence NM_001099930.1  ..................................................  

 

                              7310      7320      7330      7340      7350       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCCGAGAACTACTGGCCGCAGGCCACCTACCACGGCAACGTGACGCTGCT  

Sequence NM_001099930.1  ..................................................  

 

                              7360      7370      7380      7390      7400       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             GCGCGCCAAGACGGGCGGCGCCTACGGCGAGGACCTGGGCGCCGACTACA  

Sequence NM_001099930.1  ..................................................  

 

                              7410      7420      7430      7440      7450       

                         .|....|....|....|....|....|....|....|....|....|... 

Final Contig             ACCTGTCGCAGGTGTGCGACGGCAAGGTCTCGGTGCACGTCATCGAGGGC  

Sequence NM_001099930.1  ..................................................  

 

                              7460      7470      7480           

                         .|....|....|....|....|....|....|.... 

Final Contig             GACCACCGCACGCTGCTGGAGGGCAGCGGCCTGGAG  

Sequence NM_001099930.1  ....................................  

 

 

Illustration 34. Nucleotide sequence alignment of total sequenced product with swine FASN sequence 

NM_001099930.1. 

 

 The three previously displayed nucleotide differences reflect in two changes of 

amino acids in the translated sequence (an asparagine for a histidine and a leucine for a 

proline) (illustration 35). 

 
                                 1640      1650      1660      1670      1680    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             HATWEVPSTWTLEEAASVPIVYTTAYYSLVVRGRMQPGESVLIHSGSGGV  

Sequence NM_001099930.1  ..................................................  

 

                                 1690      1700      1710      1720      1730    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             GQAAIAIALSRGCRVFTTVGSAEKRAYLQARFPQLDETCFANSRDTSFEQ  

Sequence NM_001099930.1  ..................................................  

 

                                 1740      1750      1760      1770      1780    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             HVLRHTAGKGVDLVLNSLAEEKLQASVRCLAQHGRFLEIGKFDLSNNHAL  

Sequence NM_001099930.1  ..................................................  

 

                                 1790      1800      1810      1820      1830    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             GMAVFLKNVTFHGILLDSLFEEGGATWQEVSELLKAGIQEGVVQPLKCTV  

Sequence NM_001099930.1  ..................................................  

 

                                 1840      1850      1860      1870      1880    

                         ....|....|....|....|....|....|....|....|....|....| 
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Final_Contig             FPRTKVEAAFRYMAQGKHIGKVVIQVREEEQGPAPRGLPPIALTGLSKTF  

Sequence NM_001099930.1  ..................................................  

 

                                 1890      1900      1910      1920      1930    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             CPPHKSYVITGGLGGFGLQLAQWLRLRGAQKLVLTSRSGIRTGYQARQVR  

Sequence NM_001099930.1  ..................................................  

 

                                 1940      1950      1960      1970      1980    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             EWRRQGVQVLVSTSNASSLDGARSLITEATQLGPVGGVFNLAMVLRDAVL  

Sequence NM_001099930.1  ..................................................  

 

                                 1990      2000      2010      2020      2030    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             ENQTPEFFQDVSKPKYSGTANLDRVTREACPELDYFVIFSSVSCGRGNAG  

Sequence NM_001099930.1  ..................................................  

 

                                 2040      2050      2060      2070      2080    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             QANYGFANSAMERICEKRRHDGLPGLAVQWGAIGDVGVVLETMGTNDTVI  

Sequence NM_001099930.1  ..................................................  

 

                                 2090      2100      2110      2120      2130    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             GGTLPQRIASCLEVLDLFLSQPHPVLSSFVLAEKKAAAPRDGSSQKDLVK  

Sequence NM_001099930.1  ..................................................  

 

                                 2140      2150      2160      2170      2180    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             AVAHILGIRDVASINPDSTLVDLGLDSLMGVEVRQILEREHDLVLSMREV  

Sequence NM_001099930.1  ..................................................  

 

                                 2190      2200      2210      2220      2230    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             RQLSLRKLQELSSKTSTDADPATPTSNEDSPVRQQATLNLSTLLVNLEGP  

Sequence NM_001099930.1  ..........................H...................P...  

 

                                 2240      2250      2260      2270      2280    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             TLTRLNSVQSAERPLFLVHPIEGSITVFHGLAAKLSIPTYGLQCTGAAPL  

Sequence NM_001099930.1  ..................................................  

 

                                 2290      2300      2310      2320      2330    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             DSIQSLASYYIECIRQVQPEGPYRIAGYSYGACVAFEMCSQLQAQQSATP  

Sequence NM_001099930.1  ..................................................  

 

                                 2340      2350      2360      2370      2380    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             GNHSLFLFDGSHTFVLAYTQSVRAKMTPGCEAEAEAKAMYFFVQQFTDME  

Sequence NM_001099930.1  ..................................................  

 

                                 2390      2400      2410      2420      2430    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             QGKVLEALIPLQGLEARVAATVDLITQSHAGLDRHALSFAARSFYQKLRA  

Sequence NM_001099930.1  ..................................................  

 

                                 2440      2450      2460      2470      2480    

                         ....|....|....|....|....|....|....|....|....|....| 

Final_Contig             AENYWPQATYHGNVTLLRAKTGGAYGEDLGADYNLSQVCDGKVSVHVIEG  

Sequence NM_001099930.1  ..................................................  

 

                                 2490  

                         ....|....|. 

Final_Contig             DHRTLLEGSGL  

Sequence NM_001099930.1  ...........  

 

 

Illustration 35. Protein sequence alignment of total sequenced product with swine FASN sequence 

NM_001099930.1. 
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V. DISCUSSION 

 

Knowledge on the genetic background of fat tissue accumulation is of great 

importance in livestock production and as well as in biomedical research. 

No references were found in current literature about Sus mediterraneus FASN 

specific primer sequences. Meanwhile, from the five pairs Sus scrofa FASN specific 

primer sequences previously described and fully tested in this work, only the product 

obtained from the use of two pairs (FASN39-FW/FASN39-RV and FASN40-

FW/FASN40-RV) (Kim et al., 2011) have been successfully amplified and sequenced. 

The other ones, although submitted to different conditions (see 4.3 from chapter III) 

haven’t given products successfully amplified and/or sequenced. Therefore, this work is 

based on the amplicons obtained with the 2 pairs of primers above mentioned and with 

other 4 pairs, from the 9 pairs designed and tested by the author. 

Several FASN polymorphisms described in literature in cattle have been found 

associated with meat FA composition (Bhuiyan et al., 2009; Oztabak et al., 2014; Zhang 

et al., 2008). Furthermore, some of them have been assigned to the KR and TE domains. 

In humans, some reported FASN SNPs have been related with higher BMI, increased risk 

for developing prostate cancer and associated with dietary fat intakes (Bouchard-Mercier 

et al., 2012; Nguyen et al., 2010). 

In swine FASN, some SNPs have already been described in breeds other than the 

AL/Iberian pig, most of them related to meat quality and FA composition (Kim et al., 

2011; Munoz et al., 2007). 

Our results on a partial sequence of the AL fatty acid synthase gene have shown 

three main exonic polymorphisms, two of them missense and one silent/synonymous   

(table 4). 

 

Table 4. Characterization of the identified polymorphisms. Nomenclature of mutations follows Ogino 

et al. (2007) 

 

 

DNA sequence 

change 

Type of mutation Amino acid change 

(three-letter code) 

FASN site of 

mutation (exon) 

c.6361C>T synonymous - 38 

c.6632C>A Non-synonymous p.His2207Asn 39 

c.6693C>T Non-synonymous p.Pro2227Leu 40 
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At the nucleotide position 6361, a cytosine was substituted by a thymine with no 

further consequences on the translated triplet (alanine, GCC > GCT). As this mutation 

does not conduce to an amino acid change, it is designated by synonymous single 

nucleotide polymorphism (sSNP). 

At the nucleotide position 6632, a cytosine was substituted by an adenine, 

conducing to an alteration on the amino acid residue synthesized, from histidine (CAC) 

to asparagine (AAC) which is therefore named a non-synonymous single nucleotide 

polymorphism (nsSNP). 

Finally, at the nucleotide position 6693, a cytosine was substituted by a thymine 

conducing to an nsSNP, because it modifies the translated sequence, a proline (CCC) for 

a leucine (CTC). 

The structure of ACP and TE domains are not yet entirely resolved in the porcine 

FASN (Maier, 2008). Both nsSNPs identified in this work are located in this non 

determined coding region of the AL FASN gene. Nevertheless, c.6632C>A (His-Asn) is 

a polymorphism that has already been identified in other studies with Sus scrofa 

(accession number XP_003482986.2) although the origin of the biological material is not 

mentioned (tissue type and animal breed) and it has no publication associated to it. 

 Similarity coefficients between the sequenced AL FASN and the database record 

NM_001099930.1 (Sus scrofa) confirm that they are almost identical whether in terms of 

nucleotides (99,99%) or at the protein level (99,99%). 

 The AL FASN exonic sequence presented in this study covers part of the ER 

domain (4904 - 5575), part the KR domain (<5639 - 6349) and part of the TE domain 

(6740 - 7489). Additionally, this sequence covers the coding region of the 

phosphopantetheine attachment site (6359 - >6553), the short chain dehydrogenase region 

(5714 - 6172), several putative NADP binding sites, active sites and several NAD(P) 

binding sites. These regions have found to be highly conservative between AL and Sus 

scrofa. Estimate locations of the different regions were obtained from the reference 

sequence NM_001099930.1. 

 Sequence data obtained with this work were already deposited on the NCBI 

GenBank database under the accession number KM658506. 

 The KR domain is responsible for the first reduction in the FA synthesis cycle. In 

the presence of NADPH, it catalyzes the reduction of acetoacetyl ACP to D-3-

hydroxybutyryl ACP. After dehydration, the ER domain catalyzes the second reduction 

step of the acyl intermediate trans-Δ2-enoyl ACP into butyryl ACP, again with NADPH 

as electron donor (Berg et al., 2012). 

 During FA synthesis, the growing acyl intermediate is attached to an ACP 

throughout the elongation cycles until a 16 carbon chain lenght FA is released by a TE. 

This domain leads to the release of palmitate by the hydrolysis of the acyl-S-
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phosphopantetheine thioester bound to the preceding ACP domain (Chakravarty et al., 

2004). 

TE domains are important regions in the FASN gene because they are potential 

substrates for elongation and denaturation that are responsible for length determination 

of the FASN gene. The structure of the human TE domain is already determined. It is 

comprised of two dissimilar subdomains, A and B. The structure has a hydrophobic 

groove with a distal pocket at the interface of the two subdomains, constituting the 

candidate substrate binding site. As the TE domain ensures that the majority of FAS 

product is palmitate (C16), variations within this domain coding sequence may influence 

the structure of substrate-binding site and affect the specific activity towards acyl ACP 

intermediates (Chakravarty et al., 2004; Maharani et al., 2011; Zhang et al., 2008). 

Moreover, Zhang et al. (2008) identified, in bovines, two novel nonsynonymous 

mutations in the TE domain of FAS, g.18663T>C and g.18727C>T, which were 

associated with decreased amounts of unsaturated fatty acids. These TE polymorphisms 

might be related to the ones described hereby, though complementary studies are required 

to analyze such hypothesis. 

ACP is a single polypeptide constituted of 77 residues with scarce publication 

related to it about polymorphisms among different species (Berg et al., 2012). 

 A recent genome study on Mangalica (Molnar et al., 2014), an obese local pig of 

Hungary, concluded that local/rare breeds could be a rich source of sequence variations 

not present in industrial/lean breeds. Therefore, identified variations within such breeds, 

as the AL, might be useful resource for future studies of pig’s traits. 
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VI. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

Three polymorphisms were identified in about 33% of the total gene sequence. 

Two of these SNP’s, namely c.6632C>A and c.6693C>T, lead to changes in the translated 

triplet (missense mutations) and are located somewhere around the acyl carrier protein 

and thioesterase FASN domains, locations not yet fully understood in swine, particularly 

in terms of structure. This fact suggests that further complementary studies are required 

in order to investigate possible consequences induced by these polymorphisms and relate 

them with previously described ones on other swine breeds and/or species. 

On the other hand, it is necessary to complete the genotyping of the FASN in the 

AL breed since the discovery of more FASN polymorphisms on the remaining coding 

sequence that may provide useful information, is a solid possibility. 
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APPENDIX I – COMPLETE LIST OF TESTED PRIMERS 

 

 

 

 

 

 

 

 

 

Primer 

Designation 

Gene 

Location 

(bp) 

5’ 3’ Primer Sequence 
Sense/ 

Antisense  

FAS S 119-139 GACGACAGGCGGTGGAAGGCG Sense 

FAS AS 749-771 GTGTTCGTGCCCGCATTGAGGAT Antisense 

FAS T FW 1216-1236 CGTCATCCTTCAGCCCAACTC Sense 

FAS T RV 2578-2599 ATAGACGGCGACAGAGGAGCAG Antisense 

FAS P FW 2358-2375 TCCCGCTGATGAAGAAGG Sense 

FAS P RV 4084-4101 GTGAGGAAGCCGACCATC Antisense 

FAS Y FW 3735-3754 AGATGAAGGTGGTGGAGGTG Sense 

FAS Y RV 5549-5568 GGCAAGCACATAGGCAAAGT Antisense 

FAS X FW 5463-5479 GCATCCAGGAGGGCGTG Sense 

FAS X RV 6615-6631 GGATGTGGGAGTCGCCG Antisense 

FASN exon39-FW 6615-6631 CGGCGACTCCCACATCC Sense 

FASN exon39-RV 7025-7045 GAAGGTGTGTGAGCCGTCGAA Antisense 

FASN exon40-FW 6908-6928 CCCGAGGGGCCTTACCGCATC Sense 

FASN exon40-RV 7268-7285 GAAGGAGCGAGCGGCGAA Antisense 

FAS F FW 7015-7035 CCTCTTCCTGTTCGACGGCTC Sense 

FAS F RV 7490-7511 TGTGGATGATGCTGAGGATGGA Antisense 

FASN1 FW 88-115 CCTCATCGGCGGTGTGGA Sense 

FASN1 RV 442-465 CTGAAGTCGAAGAAGAAGGAGAGC Antisense 

FASN2 FW 435-455 CCAACCGGCTCTCCTTCTTCT Sense 

FASN2 RV 873-894 CCGTGGGCTTCGATGTATTCAA Antisense 

FAS L FW 5393-5415 ATCCTGCTGGACTCGCTCTTTGA Sense 

FAS L RV 6158-6175 TGGGAGCCCGTCGTGCCG Antisense 

FAS Q FW 6108-6130 CCAACTACGGCTTCGCCAACTCT Sense 

FAS Q RV 6746-6767 CGATGGGGTGGACCAGGAACAG Antisense 

FAS D FW 4881-4902 CCACCTCTGTTCTGCTGCTTCA Sense 

FAS D RV 5546-5565 TTGCCTATGTGCTTGCCCTG Antisense 

FAS H FW 4092-4114 GCTTCCTCACCTCCCCTGAACAA Sense 

FAS H RV 5020-5040 CCCGAGTGGATGAGCACCGAC Antisense 

FAS RACE 3’ 7452-7477 CACCGCACGCTGCTGGAGGGC Sense 

Oligo d(T) anchor NotI - AACCCGGCTCGAGCGGCCGCT18 - 

Anchor T - AACCCGGCTCGAGCGGCCGC - 
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APPENDIX II – FULL ALIGNMENT PRESENTATION OF EACH 

SEQUENCED DNA PORTION 

 

Amplicon D: 

                                  10        20        30        40        50          

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  CACGCCACCTGGGAGGTGCCCTCCACCTGGACCCTGGAGGAGGCAGCGTC  

Sequence NM_001099930.1  ..................................................  

 

                                  60        70        80        90       100         

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  GGTGCCCATCGTCTACACGACGGCCTACTACTCGCTGGTGGTGCGAGGGC  

Sequence NM_001099930.1  ..................................................  

 

                                 110       120       130       140       150     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  GCATGCAGCCCGGGGAGTCGGTGCTCATCCACTCGGGCTCGGGCGGCGTG  

Sequence NM_001099930.1  ..................................................  

 

                                 160       170       180       190       200     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  GGCCAGGCCGCCATCGCCATCGCCCTCAGCCGGGGCTGCCGCGTCTTCAC  

Sequence NM_001099930.1  ..................................................  

 

                                 210       220       230       240       250     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  CACCGTGGGGTCGGCCGAGAAGCGGGCGTACCTCCAGGCCAGGTTCCCCC  

Sequence NM_001099930.1  ..................................................  

 

                                 260       270       280       290       300     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  AGCTCGACGAGACCTGCTTCGCCAACTCCCGCGACACGTCCTTTGAGCAG  

Sequence NM_001099930.1  ..................................................  

 

                                 310       320       330       340       350     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  CACGTGCTGCGGCACACGGCCGGGAAGGGTGTCGACCTGGTCCTGAACTC  

Sequence NM_001099930.1  ..................................................  

 

                                 360       370       380       390       400     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  CCTGGCGGAAGAGAAGCTGCAGGCCAGCGTGCGGTGTCTGGCCCAGCACG  

Sequence NM_001099930.1  ..................................................  

 

                                 410       420       430       440       450     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  GCCGCTTCCTGGAAATCGGCAAATTCGACCTTTCCAACAACCACGCCCTG  

Sequence NM_001099930.1  ..................................................  

 

                                 460       470       480       490       500     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  GGCATGGCCGTCTTCCTGAAGAATGTGACCTTCCACGGGATCCTGCTGGA  

Sequence NM_001099930.1  ..................................................  

 

                                 510       520       530       540       550     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  CTCGCTCTTTGAGGAGGGCGGCGCCACCTGGCAGGAGGTGTCGGAGCTGC  

Sequence NM_001099930.1  ..................................................  

 

                                 560       570       580       590       600     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon D  TGAAGGCGGGCATCCAGGAGGGCGTGGTGCAGCCGCTCAAGTGCACCGTG  

Sequence NM_001099930.1  ..................................................  

 

                                 610       620       630       640    

                         ....|....|....|....|....|....|....|....|.. 

Final Contig Amplicon D  TTCCCCAGGACCAAGGTGGAGGCCGCCTTCCGCTACATGGCC  

Sequence NM_001099930.1  .......................................... 
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Amplicon L: 

                                  10        20        30        40        50          

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  GGAGGGCGGCGCCACCTGGCAGGAGGTGTCGGAGCTGCTGAAGGCGGGCA  

Sequence NM_001099930.1  ..................................................  

 

                                  60        70        80        90       100         

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  TCCAGGAGGGCGTGGTGCAGCCGCTCAAGTGCACCGTGTTCCCCAGGACC  

Sequence NM_001099930.1  ..................................................  

 

                                 110       120       130       140       150     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  AAGGTGGAGGCCGCCTTCCGCTACATGGCCCAGGGCAAGCACATAGGCAA  

Sequence NM_001099930.1  ..................................................  

 

                                 160       170       180       190       200     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  AGTGGTCATCCAGGTGCGCGAGGAGGAGCAGGGGCCGGCGCCGCGCGGGC  

Sequence NM_001099930.1  ..................................................  

 

                                 210       220       230       240       250     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  TGCCGCCCATCGCATTGACCGGCTTGTCCAAGACCTTCTGCCCCCCCCAC  

Sequence NM_001099930.1  ..................................................  

 

                                 260       270       280       290       300     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  AAGAGCTACGTCATCACCGGGGGCCTGGGCGGCTTCGGCCTGCAGCTGGC  

Sequence NM_001099930.1  ..................................................  

 

                                 310       320       330       340       350     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  GCAGTGGCTCCGGCTGCGAGGGGCCCAGAAGCTGGTGCTCACCTCCCGCT  

Sequence NM_001099930.1  ..................................................  

 

                                 360       370       380       390       400     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  CGGGCATCCGCACAGGCTACCAGGCCAGGCAGGTCCGAGAGTGGAGACGC  

Sequence NM_001099930.1  ..................................................  

 

                                 410       420       430       440       450     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  CAGGGCGTCCAGGTCCTGGTGTCCACCAGCAACGCCAGCTCGCTGGACGG  

Sequence NM_001099930.1  ..................................................  

 

                                 460       470       480       490       500     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  CGCTCGGAGCCTCATCACTGAGGCCACACAGCTTGGGCCCGTGGGAGGCG  

Sequence NM_001099930.1  ..................................................  

 

                                 510       520       530       540       550     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  TCTTCAACCTGGCCATGGTCCTGAGAGACGCCGTGCTGGAGAACCAGACC  

Sequence NM_001099930.1  ..................................................  

 

                                 560       570       580       590       600     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  CCGGAGTTCTTCCAGGACGTCAGTAAGCCCAAGTACAGCGGCACCGCGAA  

Sequence NM_001099930.1  ..................................................  

 

                                 610       620       630       640       650     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  CCTGGACAGGGTGACCCGGGAGGCGTGTCCCGAGCTGGACTACTTCGTGA  

Sequence NM_001099930.1  ..................................................  

 

                                 660       670       680       690       700     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon L  TCTTCTCCTCCGTGAGCTGCGGGCGCGGCAATGCCGGCCAGGCCAACTAC  

Sequence NM_001099930.1  ..................................................  

 

                                 710       720       730       740    

                         ....|....|....|....|....|....|....|....|.. 

Final Contig Amplicon L  GGCTTCGCCAACTCTGCCATGGAGCGCATCTGCGAGAAGCGC  

Sequence NM_001099930.1  .......................................... 
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Amplicon Q: 

                                  10        20        30        40        50          

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  GCCATGGAGCGCATCTGCGAGAAGCGCCGGCACGACGGGCTCCCAGGCCT  

Sequence NM_001099930.1  ..................................................  

 

                                  60        70        80        90       100         

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  CGCCGTGCAGTGGGGTGCGATCGGCGACGTGGGCGTCGTCCTGGAGACCA  

Sequence NM_001099930.1  ..................................................  

 

                                 110       120       130       140       150     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  TGGGCACCAACGACACGGTCATCGGCGGGACGCTGCCCCAGCGCATCGCC  

Sequence NM_001099930.1  ..................................................  

 

                                 160       170       180       190       200     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  TCCTGCCTGGAGGTGCTGGATCTCTTCCTGAGCCAGCCCCACCCCGTCCT  

Sequence NM_001099930.1  ..................................................  

 

                                 210       220       230       240       250     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  GAGCAGCTTCGTCCTGGCTGAGAAGAAGGCTGCCGCCCCCAGGGACGGCA  

Sequence NM_001099930.1  ..............................C...................  

 

                                 260       270       280       290       300     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  GCAGCCAGAAGGACCTGGTCAAGGCCGTGGCTCACATCCTGGGCATCCGG  

Sequence NM_001099930.1  ..................................................  

 

                                 310       320       330       340       350     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  GACGTGGCCTCCATCAATCCGGACAGCACGCTGGTGGACCTGGGCCTGGA  

Sequence NM_001099930.1  ..................................................  

 

                                 360       370       380       390       400     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  CTCGCTCATGGGCGTGGAGGTGCGCCAGATACTGGAGCGAGAGCACGACC  

Sequence NM_001099930.1  ..................................................  

 

                                 410       420       430       440       450     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  TGGTGCTGTCCATGCGGGAGGTGCGGCAGCTCAGCCTCCGGAAGCTACAG  

Sequence NM_001099930.1  ..................................................  

 

                                 460       470       480       490       500     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  GAACTCTCCTCGAAGACCAGCACGGACGCCGACCCGGCGACTCCCACATC  

Sequence NM_001099930.1  ..................................................  

 

                                 510       520       530       540       550     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  CAACGAGGACAGCCCTGTGCGGCAGCAGGCAACGCTGAACCTGAGCACCC  

Sequence NM_001099930.1  .C................................................  

 

                                 560       570       580       590       600     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Q  TGCTGGTGAACCCCGAGGGCCCGACCTTGACGCGGCTCAACTCCGTGCAG  

Sequence NM_001099930.1  ..................................................  

 

                                 610       

                         ....|....|....| 

Final Contig Amplicon Q  AGCGCAGAGCGGCCC  

Sequence NM_001099930.1  ...............  
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Amplicon exon39: 

                                       10        20        30        40        50          

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon39  AACGAGGACAGCCCTGTGCGGCAGCAGGCAACGCTGAACCTGAGCACCCT  

Sequence NM_001099930.1       C.................................................  

 

                                       60        70        80        90       100         

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon39  GCTGGTGAACCTCGAGGGCCCGACCTTGACGCGGCTCAACTCCGTGCAGA  

Sequence NM_001099930.1       ...........C......................................  

 

                                      110       120       130       140       150     

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon39  GCGCAGAGCGGCCCCTGTTCCTGGTCCACCCCATCGAGGGCTCCATCACC  

Sequence NM_001099930.1       ..................................................  

 

                                      160       170       180       190       200     

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon39  GTGTTCCACGGCCTGGCCGCCAAGCTCAGCATCCCCACCTACGGCCTGCA  

Sequence NM_001099930.1       ..................................................  

 

                                      210       220       230       240       250     

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon39  GTGCACGGGAGCCGCCCCGCTGGACAGCATCCAGAGCCTGGCCTCCTACT  

Sequence NM_001099930.1       ..................................................  

 

                                      260       270       280       290       300     

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon39  ACATCGAGTGCATCAGACAGGTGCAGCCCGAGGGGCCTTACCGCATCGCC  

Sequence NM_001099930.1       ..................................................  

 

                                      310       320       330       340       350     

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon39  GGCTACTCTTACGGGGCCTGCGTGGCCTTCGAGATGTGCTCGCAGCTGCA  

Sequence NM_001099930.1       ..................................................  

 

                                      360       370       380       390    

                              ....|....|....|....|....|....|....|....|... 

Final Contig Amplicon Exon39  GGCCCAGCAGAGCGCCACCCCCGGGAACCACAGCCTCTTCCTG  

Sequence NM_001099930.1       ...........................................  

 

 

 

Amplicon exon40: 

                                       10        20        30        40        50          

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon40  GCCGGCTACTCTTACGGGGCCTGCGTGGCCTTCGAGATGTGCTCGCAGCT  

Sequence NM_001099930.1       ..................................................  

 

                                       60        70        80        90       100         

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon40  GCAGGCCCAGCAGAGCGCCACCCCCGGGAACCACAGCCTCTTCCTGTTCG  

Sequence NM_001099930.1       ..................................................  

 

                                      110       120       130       140       150     

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon40  ACGGCTCACACACCTTCGTGCTGGCCTACACGCAGAGCGTCCGCGCTAAG  

Sequence NM_001099930.1       ..................................................  

 

                                      160       170       180       190       200     

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon40  ATGACCCCCGGCTGCGAGGCCGAGGCCGAGGCCAAGGCCATGTACTTCTT  

Sequence NM_001099930.1       ..................................................  

 

                                      210       220       230       240       250     

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon40  CGTGCAGCAGTTCACCGACATGGAGCAAGGCAAGGTGCTGGAGGCGCTGA  

Sequence NM_001099930.1       ..................................................  
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                                      260       270       280       290       300     

                              ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon Exon40  TACCGCTCCAGGGCCTGGAGGCGCGCGTGGCGGCCACCGTGGACCTGATC  

Sequence NM_001099930.1       ..................................................  

 

                                      310       320       330         

                              ....|....|....|....|....|....|....|.... 

Final Contig Amplicon Exon40  ACGCAGAGCCACGCGGGCCTGGACCGCCACGCCCTCAGC  

Sequence NM_001099930.1       .......................................  

 

 

 

Amplicon F: 

                                  10        20        30        40        50          

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon F  ACACACCTTCGTGCTGGCCTACACGCAGAGCGTCCGCGCTAAGATGACCC  

Sequence NM_001099930.1  ..................................................  

 

                                  60        70        80        90       100         

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon F  CCGGCTGCGAGGCCGAGGCCGAGGCCAAGGCCATGTACTTCTTCGTGCAG  

Sequence NM_001099930.1  ..................................................  

 

                                 110       120       130       140       150     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon F  CAGTTCACCGACATGGAGCAAGGCAAGGTGCTGGAGGCGCTGATACCGCT  

Sequence NM_001099930.1  ..................................................  

 

                                 160       170       180       190       200     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon F  CCAGGGCCTGGAGGCGCGCGTGGCGGCCACCGTGGACCTGATCACGCAGA  

Sequence NM_001099930.1  ..................................................  

 

                                 210       220       230       240       250     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon F  GCCACGCGGGCCTGGACCGCCACGCCCTCAGCTTCGCCGCTCGCTCCTTC  

Sequence NM_001099930.1  ..................................................  

 

                                 260       270       280       290       300     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon F  TACCAGAAGCTGCGCGCCGCCGAGAACTACTGGCCGCAGGCCACCTACCA  

Sequence NM_001099930.1  ..................................................  

 

                                 310       320       330       340       350     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon F  CGGCAACGTGACGCTGCTGCGCGCCAAGACGGGCGGCGCCTACGGCGAGG  

Sequence NM_001099930.1  ..................................................  

 

                                 360       370       380       390       400     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon F  ACCTGGGCGCCGACTACAACCTGTCGCAGGTGTGCGACGGCAAGGTCTCG  

Sequence NM_001099930.1  ..................................................  

 

                                 410       420       430       440       450     

                         ....|....|....|....|....|....|....|....|....|....| 

Final Contig Amplicon F  GTGCACGTCATCGAGGGCGACCACCGCACGCTGCTGGAGGGCAGCGGCCT  

Sequence NM_001099930.1  ..................................................  

 

                          

                         .... 

Final Contig Amplicon F  GGAG  

Sequence NM_001099930.1  ....  

 

 


