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Abstract

This study hypothesizes the existence of three groups of sea lamprey Petromyzon marinus L. in Portugal (North/Central
group, Tagus group, and Guadiana group), possibly promoted by seabed topography isolation during the oceanic phase of
the life cycle. Within this context, our purpose was to analyze the existence of a stock structure on sea lamprey populations
sampled in the major Portuguese river basins using both morphological characters and heart tissue fatty acid signature. In
both cases, the multiple discriminant analysis revealed statistically significant differences among groups, and the overall
corrected classification rate estimated from cross-validation procedure was particularly high for the cardiac muscle fatty acid
profiles (i.e. 83.8%). Morphometric characters were much more useful than meristic ones to discriminate stocks, and the
most important variables for group differentiation were eye length, second dorsal fin length and branchial length. Fatty acid
analysis showed that all lampreys from the southern Guadiana group were correctly classified and not mixing with
individuals from any other group, reflecting a typical heart fatty acid signature. Our results revealed that 89.5% and 72.2% of
the individuals from the Tagus and North/Central groups, respectively, were also correctly classified, despite some degree of
overlap between individuals from these groups. The fatty acids that contributed to the observed segregation were C16:0;
C17:0; C18:1v9; C20:3v6 and C22:2v6. Detected differences are probably related with environmental variables to which
lampreys may have been exposed, which leaded to different patterns of gene expression. These results suggest the
existence of three different sea lamprey stocks in Portugal, with implication in terms of management and conservation.
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Introduction

European populations of sea lamprey (Petromyzon marinus L.)

have declined over the last 30 years [1], [2], and several authors

have pointed out a reduction in sea lamprey abundance in

Portuguese rivers [3], [4]. Sea lampreys can be found in all major

Portuguese river basins, being more abundant in the central and

northern regions of the country [3]. Due to the reduction in

population abundance and the anthropogenic pressures to which

this species is subjected, in Portugal it is classified as ‘‘Vulnerable’’

in the Red List of Threatened Vertebrates [4].

Whereas the continental phase of lampreys’ life cycle is well

known, the oceanic phase remains a mystery, with available data

resuming to a few accidental captures of host species with scars or,

occasionally, lampreys still attached to the fish or cetaceans [5]. A

limited record of 80 sea lampreys captured in the northwest

Atlantic indicated that almost all individuals with less than 39 cm

long where taken in bottom trawls on the continental shelf or in

coastal trap nets, whereas most animals with more than 56 cm

long were captured in mid-water trawls along the shelf edge or

over the continental slope [6]. Evidence that sea lamprey might

not show homing behaviour first emerged following a tagging

study with a landlocked population of the Great Lakes [7], and

was then corroborated using genetic analysis on anadromous

populations captured along the east coast of North America [8],

[9].

The anatomy and physiology of an individual is sensitive both to

genetic and environmental factors, which are responsible for
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phenotypic variation reflecting morphological characteristics [10].

In meristic terms, the effect of abiotic factors during ontogeny may

result in significant differences between individuals of the same

population, [11]. Morphometric characters are exposed to the

same abiotic factors for an even longer period of time, which may

increase the susceptibility of having more differences [12]. If those

differences are ecologically significant and constant in time, they

may allow the identification of individuals of different populations

or stocks [13]. Morphometric variables measured in the cephalic

region of sea lamprey larvae were found to be more suitable for a

morphological analysis of geographic variation between Portu-

guese river basins [14]. Meristic characters were also assessed but

the discriminatory power between groups, i.e. river basins, was

comparatively weaker.

The concept of stock is fundamental for both fisheries and

endangered species management [15]. A stock can be defined as a

population or portion of a population of which all members are

characterized by similarities which are not heritable, but are

induced by the environment, and which include members of

several different subpopulations [16]. Unit stocks can also be

defined as characteristic populations or sets of subpopulations

within subareas of the geographic range of a species [17], or as ‘‘…

an intraspecific group of randomly mating individuals with

temporal and spatial integrity’’ [13].

Spawning areas are normally clearly distinguished among the

different stocks, but since fish may undertake considerable

migrations, catches may also consist of fish from several stocks.

For this reason, much work has been carried out to find characters

that can be used for stock identification [18]. Waldman et al.[19]

suggested that stock identification could be based upon catch data,

tag recoveries, meristics, morphometrics, scale morphology,

parasites, and cytogenetic: protein electrophoresis, monogenetic,

mitochondrial DNA and nuclear DNA.

One of the limitations when using fatty acid profiles of a tissue

as biomarkers and/or to characterize species, subspecies, popula-

tions, or stocks, is that the fatty acid profile under analysis can be

influenced by various environmental factors, including the diet

[20]. However, when fatty acid profiles are used for identification,

the assumption is that the composition of fatty acids in membrane

phospholipids is genetically controlled and stable over time, and

therefore the phospholipid fatty acids may be used as a natural

marker over a longer timescale [21]. Several studies have indicated

genetic control of the fatty acid composition in the heart lipids

although the impact of environmental factors could not be

excluded [18], [21]. The lipid composition of cardiac skeletal

muscle has a high level of polar lipids incorporated in the

membrane phospholipid pool, so its fatty acyl structure restricts

the ability of the acyl chains to reflect diet [22], and because of the

specialized functions of these lipids on membranes, this lipid class

is relatively robust to dietary changes. For the reasons explained

above, fatty acids of cardiac skeletal muscle may serve as natural

markers for the identification of stocks [21], [23]. In the last

decade, several reports have suggested that fatty acid composition

of phospholipids in some body tissues (e.g. heart tissue, brain, eggs)

have a stable genetics basis, making these tissues appropriate for

stock identification [18], [20], [24], [25]. Many fish species such as

herring (Clupea harengus L.), striped bass (Morone saxatilis
Walbaum, 1792) and cod (Gadus morhua L.) had been studied

with this approach looking for possible stock differences [18], [26],

[27].

Within this context, we hypothesize the existence of three sea

lamprey groups in Portugal, possibly promoted by the seabed

topography isolation during the oceanic phase of the life cycle;

three large abyssal plains, and adjacent continental slopes, occur

off western Iberian Peninsula: the Iberia Abyssal Plain in the

north, the Tagus Abyssal Plain in the centre and the Horseshoe

Abyssal Plain in the south. The Iberia Abyssal Plain is separated

from the Tagus Abyssal Plain by the Estremadura Spur and the

Tore Seamount, and by the Nazaré Canyon (continental shelf).

The Tagus Abyssal Plain is separated from the Horseshoe Abyssal

Plain through the Gorringe Bank and the Setúbal Canyon

(Fig. 1).The hypothesis presented in this study is associated with

the assumption that the bulk of the parasitic attacks are directed

towards benthic hosts, which are believed to have restricted

dispersal capability when compared with the more mobile pelagic

species, and thus exchanges between lamprey feeding areas (i.e.

groups) are strongly reduced. This hypotheses is supported by two

evidences: (i) recent discoveries indicate a shorter hematophagous

feeding stage (,1 year) [28], first reported to last from 23 to 28

months [29]; and (ii) there are no capturing records of adult

lampreys or fish with wounds, compatible with potential lamprey

attachments, in the data collected from annual surveys performed

in the Portuguese continental shelf by IPMA I. P., the Portuguese

fisheries laboratory (Yorgos Stratoudakis, pers. comm.). The short

adult feeding stage attributed to the sea lamprey reduces

considerably their dispersion capability in the marine environ-

ment, and this fact, together with the absence of evidences of adult

lampreys feeding in the continental shelf, support the present study

hypotheses that postulates that the majority of the growth during

the parasitic feeding stage are related with attachments to benthic

hosts species that live in the continental slope and/or abyssal

plains. To test this hypothesis we analysed (i) morphological

differentiation, and (ii) heart tissue phospholipid fatty acid profile

between sea lamprey adults from the main Portuguese river basins,

divided in the three groups mentioned above. In parallel, we

performed analysis of genetic differentiation among the exact same

groups using 12 microsatellite loci (results not shown, unpublished

data), but no differences were found among the three groups at

this level. To end, we discuss on the possibility of the existence of

three sea lamprey stocks off western Iberian Peninsula, distinct by

segregation in the trophic phase of the life cycle, and make some

considerations and recommendations for conservation.

Methods

Ethics statement
Sampled sea lampreys were transported alive to the laboratory

in a 0.4 m3 capacity tank equipped with proper life support system

including aeration, external filter and temperature control. In the

laboratory, the individuals were first immersed in cold water to

minimize handling stress and pain sensibility and sacrificed

through decapitation method. This study was carried out in strict

accordance with the recommendations present in the Guide for

the Care and Use of Laboratory Animals of the European Union –

in Portugal represented by the Decree-Law nu129/92, Portaria

nu1005/92. Approval by a named review board institution or

ethics committee was not necessary as the final model for ethical

experimentation using fish as biological models was not imple-

mented in Portuguese research units at the time of experimenta-

tion. This work was conducted under an institutional license for

animal experimentation and a personal license to first author

Maria João Lança and the co-authors Pedro R. Almeida and

Bernardo R. Quintella, issued by the Direcção-Geral de Veter-

inária (DGV), Portuguese Ministry of Agriculture, Rural Devel-

opment and Fisheries.
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Sampling
Sea lamprey spawners were captured in March 2008 during the

peak of their spawning migration in eight river basins: Minho

(41u529N; 08u509W), Lima (41u419N; 08u499W), Cávado

(41u329N; 08u479W), Douro (41u089N; 08u409W), Vouga

(40u399N; 08u439W), Mondego (40u89N; 08u509W), Tagus

(39u039N; 08u479W) and Guadiana (37u389N; 07u399W). No

specific permissions were required for sampling in these locations

because the adult lampreys were captured by local fishermen in

designated professional fishing areas. This study was conducted

with a species considered ‘‘Vulnerable’’ by the Portuguese Red

List of Threatened Vertebrates but general permits for field

sampling fish (including P. marinus) were accredited by the

Autoridade Florestal Nacional (AFN).

A total of 224 sea lampreys were collected, including about 30

individuals from each river basin. Specimens from each river basin

were grouped a priori to test the hypothesis of stock fragmentation

promoted by the seabed physiographic features during the oceanic

parasitic phase. We defined three groups based on the geograph-

ical location of the river mouth, namely, the proximity to western

Iberia oceanic areas (Fig. 1). Group 1 includes individuals

captured in the Minho, Lima, Cávado, Douro, Vouga and

Mondego river basins; Group 2 collects specimens captured in

River Tagus; and Group 3 includes individuals from River

Guadiana (Fig. 1).

Detailed temperature–salinity distribution in the Northeast

Atlantic, the region encompassing the three large abyssal plains

(i.e. Iberia, Tagus and Horseshoe), is available at the web-site of

the Centre of Oceanography of the University of Lisbon (http://

co.fc.ul.pt/en/data) [30].

Morphological characters
A total of 34 morphological characters were used: 24

morphometric and 10 meristic (Fig. 2), following [31]–[33].

All the 224 captured lampreys were used for the morphometric

analysis. The morphometric characters were measured using

graduated scales (60.5 mm) and callipers (60.5 mm; Fig. 2a). A

sub sample of 201 lampreys was used for the meristic analysis. The

oral disc of each individual was photographed (Kodak Z740) to

count the meristic characters (Fig. 2b). To standardize the

procedure, the picture was taken through an acrylic plate with

the oral disc always opened to its maximum amplitude. A

graphical scale was used to calibrate each image. The pictures

were analyzed and processed using the Image J software [34] to

count the number of teeth and rows in the anterior, laterals and

posterior fields of the lamprey oral disc. The adopted teeth

terminology (Fig. 2b) follows that proposed by Vladykov and

Follett [31]. Trunk myomeres were counted between the anterior

edge of the cloacal slit and the posterior edge of the last branchial

opening, following [32]. All counts and measurements were made

on the left side of the body.

Figure 1. Location of the river basins from which sea lamprey individuals were collected. Formation of the three groups (testing
hypothesis) based on the geographical location of the river mouth and the proximity to western Iberian oceanic areas with the representation of the
seamounts and canyons that contour the three abyssal plains. Acronyms: Iberia AP - Iberia Abyssal Plain; Tagus AP – Tagus Abyssal Plain; Horsheshoe
AP – Horsheshoe Abyssal Plain; T – Tore Seamount; ES – Estremadura Spur; G – Gorringe Bank.
doi:10.1371/journal.pone.0108110.g001
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Total mass (60.01 g) of each individual was determined using a

precision balance (Kern 440-36).

To test the hypothesis of sexual dimorphism in morphometric

and meristic characters of P. marinus, the gender of all individuals

was confirmed with histological slides, prepared with sections of

reproductive organs according to the standard protocol of [35].

Histological slides were observed using a stereomicroscope (Leica

DM 2000).

Tissue preparation and collection
Data on body total mass (TM, nearest g) and total length (TL,

nearest mm) was registered for each sea lamprey.

Figure 2. Schematic representation of the morphological features recorded for the analysis of geographic variation of sea lamprey
in Portugal. (a) lateral view outline with the representation of the measured morphometric characters: TL, total length; d, disc length; d-a, distance
between disc and anus; a-C, tail length; B7-C, postbranchial length; B7-a, trunk length; d-D1, predorsal distance; d-eD1, distance between disc and
posterior end of first dorsal fin; d-D2, distance between disc and base of second dorsal fin; D2-C, dorsal part of caudal fin length; lD1, first dorsal fin
length; lD2, second dorsal fin length; D-D, distance between dorsal fins; H, body depth; d-O, preocular distance; O, eye diameter; O-B1, postocular
length; Hco, head depth; d-B1, prebranchial length; B1-B7, branchial length; d- B7, head length; d-n, prenostril length; IO, interocular distance; HW,
head width; (b) photograph of the oral disc with the representation of the counted meristic characters: AF, anterior field; LFR, lateral right field; LFL,
lateral left field; PF, posterior field; SO, supraoral lamina; L, lingual lamina; IO, infraoral lamina; TNteeth, total number of teeth; AFteeth, number of
teeth in the anterior field; LFteeth, number of teeth in the lateral field; PFteeth, number of teeth in the posterior field; TNrows, total number of rows;
AFrows, number of rows in the anterior field; LFrows, number of rows in the lateral field; PFrows, number of rows in the posterior field; IOcusps,
number of cusps in the infra-oral lamina).
doi:10.1371/journal.pone.0108110.g002
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Data on heart total mass (HTM, nearest g) and gender was

reported for each sea lamprey (see previous section for gender

determination). Sex ratio (male/female), heart total mass/body

gutted mass ratio (HTM/BGM, expressed in percentage) and

heart percentage of water loss (Hwater) were also determined.

The heart was rapidly excised and rinsed in ice-cold 0.9% NaCl

solution. Heart was then sliced and frozen between the tongues of

an aluminum clamp that was cooled in liquid nitrogen. The frozen

tissue heart samples were stored in aluminum canisters at 280uC
until laboratorial processing.

Heart tissue lipid extraction and fatty acid analysis
Pre-testing (random subsample of 8 individuals per river basin)

determination of heart total lipids, neutral lipids and polar lipids

revealed that more than 90 percent of the lipids present in heart

tissue were polar lipids, resulting in all further analyses for fatty

acid profile characterization were only done in polar lipid class.

Lipid extraction was made according to the method described by

Lança et al. [36]. Briefly, heart tissue total lipids were extracted

using a Dionex 100 accelerated solvent extractor (ASE). To

prepare for extraction, aliquots of 1 g portion of heart muscle

samples were weighed on an analytical balance (Mettler AT201;

Greifensee, Switzerland) and their masses were recorded to the

nearest 0.01 mg. Tissue samples were then lyophilized until

constant mass to determine the percentage of water loss and

aliquots of heart tissue with 100 mg of dry weight were used. The

total lipid sample was then extracted with a mixture of 60%

chloroform and 40% methanol (Merck, Darmstadt, Germany) at

100uC and 13.8 MPa.The crude extract was then concentrated

under a stream of nitrogen and vacuum and heart total lipid

(HTLip, expressed in g per g of dry heart muscle) were

determined.Each sample was reconstituted in 20–30 volumes of

ice-cold acetone to separate neutral lipids from polar lipids

Because the proportion of neutral lipids obtained were negligible,

only the lower phase corresponding to polar lipids was saponified

in methanolic NaOH 0.5 N at 70uC for 20 min. Fatty acids were

then prepared with boron-trifluoride-methanol (14 g BF3/L

CH3OH, Merk-Schuchardt, Germany) in order to give fatty

methyl esters (FAME) according to the procedure of [37].

FAME were analysed by liquid-gas chromatography in a

Hewlett Packard HP 6890 Series GC System according the

chromatographic conditions described in [36].

The presence of C13:0 fatty acid on samples was confirmed

using a GC-MS Bruker Scion 456 equipped with a BR-Swax

3060,25 mm column. Conditions were as follow: Inlet tempera-

ture 2250u; Inlet mode - split 20 mL/min; He 1,2 mL/min

column constant flow and oven temperature range from 120uC
(for 5 min) to 240uC (for 10 min) with a ramping rate of 4uC/min;

Ionization source: 70 eV electron ionization; and the GC-MS

operated in full scan mode from 40–450 Da. To detect the subject

compound ion extraction m/z 74 the m/z 87 were made.

The unsaturation index (UI), a measure of the number of

double bonds within a sample, was calculated as the sum of the

percentage of each unsaturated fatty acid multiplied by the

number of double bonds within that fatty acid [38].

Data analysis and interpretation: morphometric and
meristic analysis

The statistical package SPSS for Windows (IBM, version 20.0)

was used for data treatment and statistical analysis. Data

transformations were used when appropriate.

The statistical analysis was applied following [14] which

compared morphometric and meristic characters of P. marinus
ammocoetes captured in several Portuguese river basins.

Briefly, analyses were performed separately for morphometric

and meristic characters, and morphometric data were statistically

adjusted to eliminate the influence of allometric growth as

described in [14].

Outliers were detected by regression analysis of morphometric

characters against total length, and by scatter plots of residual

versus predicted values [39], resulting in the elimination of

morphometric data for 19 lampreys (n = 18 from Group 1 and

n = 1 from Group 3).

Of the 23 morphometric characters used in this analysis, 22

showed a linear relationship with total length (P,0.05). For

character O, the only morphometric variable uncorrelated with

total length (P.0.05), no size adjustment of the data was

performed. For each of the 22 morphometric characters linearly

related with total length, an analysis of covariance (ANCOVA)

was employed to test for differences in allometric relationships

among samples (i.e. geographical groups) and to estimate the

common within-group regression slopes [39]. According to the

ANCOVA analyses, within-group regression slopes were signifi-

cantly different (df = 2, 201; P,0.05) for six of the morphometric

characters (d-D1; H; d; hco; B1-B7; HW); and thus size adjustment

was based on the common within-group slopes and was performed

following a modification of the allometric formula given by [40], as

described in [14].

A multivariate analysis of variance (MANOVA) was used to

assess the main and interaction effects of categorical variables

(gender and geographical groups) on the 23 dependent morpho-

metric variables. Highly significant differences (P,0.001) were

found between gender and groups, but not for the interaction

effect (gender 6 group; P.0.05) (Table 1). Consequently, 10

morphometric variables were removed from further analysis to

eliminate the influence of sexual dimorphism among morphomet-

ric characters (Table 2).

No significant relationship (P,0.05) was found between the

meristic characters and total length and thus, no size adjustment

was performed. Outliers were detected by the SPSS Boxplot

procedure following [14], which resulted in the elimination of 13

specimens (n = 7 Group 1, n = 3 Group 2 and n = 3 Group 3).

A permutational multivariate analysis of variance (PERMA-

NOVA, two-way crossed design) was used to assess the main and

interaction effects of two factors (gender and geographical groups)

on the meristic variables. No sexual dimorphism effect (P.0.05)

nor geographical group (P.0.05) was found among the meristic

characters (Table 3), and consequently meristic data was not

subsequently analysed with a multiple discriminant analysis

(MDA).

Morphometric data from the three groups defined a priori were

compared separately by means of a MDA.

Since the groups formed a priori varied markedly in size, a

stratified (river/gender) random sample from the larger group (i.e.

Group 1) was performed to reduce their size to a level comparable

with the smaller groups (i.e. Groups 2 and 3), following

recommendations for sample sizes in MDA analysis [41].

Consequently, the MDA was run with a subsample of 36

individuals from Group 1, all individuals from Group 2 (n = 28)

and from Group 3 (n = 23). The computational method used to

derive the discriminant function was the stepwise method with the

selection rule to maximize Mahalanobis D2 between groups [41],

and remaining MDA related procedures followed [14].

Data analysis and interpretation: heart fatty acid profiles
The statistical package SPSS for Windows (IBM, version 20.0)

was used for data treatment and statistical analysis. Data

transformations were used when appropriate. Since the distribu-
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tion of fatty acid percentages is binomial, an arcsine transforma-

tion of fatty acid data was used prior to statistical analysis to meet

assumptions of normality, independence and homocedasticity.

The integrated chromatogram values for each fatty acid were

expressed as a percentage of the total sum of fatty acids identified

in order to eliminate concentration effects.

Multivariate analysis of variance (MANOVA) was used to see

the main interaction effects of categorical variable (gender and

geographical groups) on multiple interval variables (fatty acids) and

to test our hypothesis that distinct geographical groups of sea

lampreys present distinct heart phospholipids fatty acid composi-

tion. Significance of the MANOVA was evaluated with Wilk’s

lambda. Multiple discriminant analysis (MDA) was used to identify

which fatty acid contributed most to the differences in heart tissue

composition among geographical groups.

Once again, for the MDA a stratified (river/gender) random

sample from the larger group (i.e. Group 1) was performed to

reduce their size to a level comparable with the smaller groups (i.e.

Groups 2 and 3). Consequently, the MDA was run with a

subsample of 36 individuals from Group 1, all individuals from

Group 2 (n = 19) and from Group 3 (n = 19). Also, the number of

independent variables must not exceed the smallest group size

[41], and consequently, the MDA was run with a subsample of 19

fatty acids instead of the 30 fatty acids previously identified in each

sample group. So, one must select few fatty acids for use in a

particular analysis, generally choosing fatty acids that are expected

to vary based on biological functions or, if no a priori hypotheses

exist, simply have the greatest abundance in the sample set.

Because, in phosphoglycerides, the most common of the

phospholipids that constitute animal cell membranes seldom

contain significant amounts of saturated fatty acids other than

Table 1. MANOVA multivariate test with sex and geographical groups as factors, and adjusted morphometric characters as
dependent variables.

Effect Pillai’s Trace value F df P Partial e2 Obs. Power

Group 0.581 3.186 (46; 358) ,0.001 0.290 1.00

Sex 0.536 8.928 (23; 178) ,0.001 0.536 1.00

Group 6 Sex 0.245 1.086 (46; 358) . 0.05 0.122 0.97

doi:10.1371/journal.pone.0108110.t001

Table 2. Mean of adjusted morphometric characters used for the morphological analysis of P. marinus.

Morphometric Male Female MANOVA (F statistic; df = 1)

d 3.978 3.945 9.246***

d-a 6.449 6.455 3.667NS

a-C 5.463 5.448 3.603NS

B7-C 6.541 6.545 12.366**

B7-a 6.133 6.145 12.195**

d-D1 6.099 6.104 0.057NS

d-eD1 6.313 6.316 0.000NS

d-D2 6.379 6.384 0.260NS

D2-C 5.643 5.630 1.970NS

lD1 4.671 4.670 0.096NS

lD2 5.385 5.369 0.484NS

D-D 3.682 3.710 2.452NS

H 3.995 4.068 50.131***

d-O 4.130 4.093 31.630***

O 2.185 2.176 0.107NS

O-B1 3.023 3.006 0.524NS

Hco 3.790 3.773 7.432**

d-B1 4.486 4.457 25.592***

B1-B7 4.470 4.466 0.631NS

d- B7 5.165 5.149 12.228**

d-n 4.010 3.972 18.027***

IO 3.857 3.832 15.328***

HW 4.000 3.990 1.912NS

Tests of Between-Subjects Effects from the MANOVA for the factor sex (presented in Table 1), are also presented.
Acronyms of variables as defined in Figure 2; NS P.0.05;* P,0.05;** P,0.01; *** P,0.001.
doi:10.1371/journal.pone.0108110.t002
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16:0, 18:0, and to a lesser extent 20:0 [42] so all fatty acids either

with chain length smaller than 10 carbons, or with chain length

greater than 22 carbons were excluded; in the pool of monoun-

saturated fatty acids the C14:1 and the only odd chain fatty acid

were excluded and in the pool of polyunsaturated fatty acids the

C18:3v3 and C18:3v6 were excluded since they were not

detected in any of the groups.

The remaining procedures regarding the MDA with the fatty

acids were similar to the analysis performed with the morpho-

metric characters.

The Pearson correlation test was used to analyse the relation-

ship between heart total mass (HTM) and heart total lipid content

(HTLip) for lampreys of each geographical group.

Results

Sexual dimorphism
From the 224 adult lampreys captured, 109 were males and 115

were females. The total length (TL) and body total mass (TM) of

the sampled lampreys ranged from 63.9 cm to 97.9 cm (mean

TL = 86.4 cm) and from 770 g to 1806 g (mean MT = 1188 g),

respectively. Significant differences were found (ANCOVA; F(1,

221) = 8.153, P,0.01) when comparing male (y = 0.0898x2.1209;

r2 = 0.61; d.f. = 107;P,0.001) and female length-weight relation-

ship (y = 0.0568x2.2342; r2 = 0.72; d.f. = 113;P,0.001). Generally,

males tend to be longer while females are heavier, and differences

tend to increase with length.

Gender related differences were found in 10 of the 23

morphometric characters analysed (Table 1; MANOVA, P,

0.001). In general, males have larger cephalic regions including

longer d, d-O, hco, d-B1, d-n and IO; while females have a

tendency to longer and larger trunks (B7-a and H, respectively)

(Table 2). No significant differences were found between genders

for the analysed meristic characters (Table 3; PERMANOVA,

P.0.05).

Morphometric analysis
The regressions for Z scores from discriminant functions 1 and 2

of discriminant analysis against total length were not significant

(r2 = 0.011, df = 86, P = 0.340; and r2 = 0.021, df = 86, P = 0.176),

indicating that size effects had been removed from the adjusted

morphometric variables. Discriminant functions are statistically

significant (Wilk’s lambda, P,0.001), and all pairs of groups

showed statistically significant differences (df = 3, 82; P,0.05).

The stepwise analysis revealed that three morphometric characters

contributed significantly to the MDA (O, lD2, B1-B7). The Z scores

and centroids from discriminant functions 1 and 2 were plotted

against each other to develop a graphic representation of the

relationship among groups (Fig. 3a). The two discriminant

functions account for 59.3% and 40.7% of total variation. The

total classification rate estimated from cross-validation procedure

was 54%, ranging from 38.9 to 73.9% (Table 4). Press’s Q test

revealed that the classification accuracy is statistically significant

better than chance (Press’s Q = 16.759, df = 1, P,0.001).

The interpretation of the plot in figure 3a indicates that

Function 1 is the primary source of separation between Group 2

(river Tagus’ lampreys) and Group 3 (river Guadiana’s lampreys);

whereas Function 2 discriminates Group 1 (Northern river basins’

lampreys) from the remaining. Discriminant loadings and potency

index were used to assess the contributions of the three

discriminant morphometric variables (Table 5). High correlations

between the discriminant loadings of the variable O with the first

function, and lD2 and B1-B7 with the second function identified

the variables with the best discriminatory power for each axis

(Table 5). The character O was the variable with the highest

potency index value and can be considered the most important

morphometric character to distinguish adult P. marinus entering

Tagus (mean O = 2.15) and Guadiana (mean O = 2.22) river

basins (Table 5). Group 1 lampreys have intermediate size eyes

(mean O = 2.18), longer second dorsal fins (mean 1D2 = 5.39) and

shorter branchial lengths (mean B1-B7 = 4.46) when compared

with lampreys entering rivers Tagus (1D2 = 5.37; B1-B7 = 4.48)

and Guadiana (1D2 = 5.36; B1-B7 = 4.47).

Meristic analysis
No significant differences were found between meristic charac-

ters of lampreys belonging to the a priori defined geographical

groups (Table 3; PERMANOVA, P.0.05) and no significant

interaction between gender and group was detected (Table 3;

PERMANOVA, P.0.05). The AFteeth, LFteeth and PFteeth

showed high variation between specimens, whereas the AFrows

and LFrows did not show variation among individuals (Table 6).

Tissue fatty acid profile
Individuals of Group 2 showed significantly higher values of

heart total mass (HTM) (P,0.001) than the other two groups.

However, no significant differences were detected for HTM/BGM

ratio among individuals of the three groups (P.0.05; Table 7).

The values of the HTM/BGM ratio were 0.25% for groups 1 and

2 and 0.24% for Group 3 (Table 7).

The heart total lipid content (HTLip) revealed significant

differences (P,0.001) among the individuals of the three groups

with sea lampreys of Group 2 showing the lowest value (15.3%),

and the individuals of Group 3 presenting the highest value

(30.8%) (Table 7). For each of the three groups, no significant

correlation was found between HTM and HTLip.

The fatty acid profile of the heart tissue phospholipids varied

among individuals of the three groups (Table 8). Gender had no

significant effect (MANOVA, P.0.05) in fatty acid relative

Table 3. PERMANOVA results for the two-way crossed design, with geographical group and sex as factors, and meristic characters
as variables.

Source Df SS MS Pseudo-F P(perm) Unique perms

Group 2 0.821 0.410 1.498 0.193 9942

Sex 1 0.569 0.569 2.078 0.124 9951

Group 6 Sex 2 0.517 0.258 0.943 0.437 9955

Residual 181 49.592 0.274

Total 186 51.493

doi:10.1371/journal.pone.0108110.t003
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composition of phospholipids of heart tissue, whereas geographical

groups exhibited a significant effect (MANOVA, P#0.001). The

interaction gender*geographical group had no significant effect in

this variable (MANOVA, P.0.05).

The predominant class of fatty acids in heart tissue was the

saturated fatty acids (SFA), with percentages that ranged from

37.92% in individuals from Group 3, to 39.52% in individuals of

Group 1 (Tab. 8). The major exception was recorded in sea

lampreys from Group 2, where the percentage of SFA was similar

to that of monounsaturated fatty acids (MUFA). In what concerns

MUFA, individuals of Group 3 were characterized by the lowest

values (19.67%), and individuals of Group 2 were characterized by

the highest values (38.33%). Polyunsaturated fatty acid (PUFA)

relative percentages varied between 17.72% (Group 2) and

21.38% (Group 3) (Table 8).

The predominant fatty acids detected were C16:0, C18:0 and

C13:0 for SFA; C18:1v9 and C16:1 for MUFA; and C22:6v3

(DHA), C22:5v3 (DPA) and C20:5v3 (EPA) for PUFA. The

percentage content of EPA and DHA demonstrates the domi-

nance of DHA over EPA (DHA/EPA ratio) Although occurring at

relative low amounts, several odd chain fatty acids like C13:0;

C15:0; C17:0 and C17:1, were also present in heart tissue fatty

acid profiles (Table 8). The unsaturated-to-saturated ratio (UFA/

SFA) was used as an indirect indicator of the membrane fluidity

(Table 8), since it has been previously reported that membranes

with high UFA/SFA ratio show a high fluidity [43]. Individuals

from Group 2 presented the highest value (1.45), and individuals of

Group 3 exhibited the lowest value (1.24), but no significant

differences were observed (P.0.05). The unsaturation index (UI)

was higher in Group 3 (132), followed by Group 1 (125) and by

Group 2 (116), but no significant differences were observed (P.

0.05).

The MDA for the 19 fatty acids proved to be statistically

significant and the overall corrected classification rate estimated

from cross-validation procedure was 83.8% (Fig. 3b). All lampreys

from Group 3 were correctly classified (100%) and not mixing with

the sea lampreys from any of the other groups, reflecting a typical

heart fatty acid signature for individuals of this group (Fig. 3b,

Table 9). It is also interesting to note that, 89.5% and 72.2% of the

individuals from groups 2 and 1, respectively, were also correctly

classified (Table 9). The fatty acids that contributed to the

segregation of groups were the SFA C17:0 (35.9%) and C16:0

(25%); the MUFA C18:1v9 (14.1%); and the PUFA C20:3v6

(4.7%) and C22:2v6 (3.3%). The fatty acid with the highest

potency index that contributed for the separation of the sea

lamprey groups was C17:0. Press’s Q test revealed that the

classification accuracy was significantly better than chance (Press’s

Q = 754.735 gdl = 1; P#0.001).

Discussion

Morphological variation and potential adaptation in the
proposed groups

Sexual dimorphism among mature lampreys is well known and

appears to be similar in all lamprey species [44]. This study data

showed that male adult sea lampreys captured in the beginning of

the spawning migration weight less than females, and although

some additional subtle morphometric differences between genders

were found, no obvious secondary sex characters were detected.

Males show an increased prebranchial length and oral disc size,

while females have a longer and wider trunk, similar to the

findings of [45] for the Arctic lamprey Lethenteron camtschaticum
(Tilesius, 1811). A larger head in males is most likely related with

distinctive behaviours during the spawning period, in particular

nest construction and agonistic behaviour when competing for

females. A stronger suctorial capacity provided by larger oral discs

may be an important characteristic to maximize reproductive

success among males. Similar results were described for Southern

Hemisphere species of the genera Geotria and Mordacia, of which

an increase in size of the male oral disc, associated with an

extension in the length of the preorbital region, was observed [46],

[47]. The larger trunk observed in females is most likely related

with the maximization of space for the development of the gonads,

thus increasing fecundity. Elongated trunk in female lampreys was

also described by [48] for the European river lamprey Lampetra
fluviatilis L.

Morphologically, the classification rate estimated for animals

from River Tagus (Group 2) was 57%, which means that most of

the animals that entered this river to spawn presented similar

characteristics, even though a considerable number of lampreys

showed a morphological profile compatible with the other two

groups. A poor discrimination rate (39%) was found for the

northern lampreys pooled in Group 1 (i.e., rivers Minho, Lima,

Cávado, Douro, Vouga and Mondego). This result indicates that

specimens from this geographical region are morphologically more

diverse when compared with sea lampreys entering Tagus and

Guadiana basins. The wider range of abiotic scenarios like depth

(see Fig. 1 for sea floor topography), observed in the oceanic area

Figure 3. Plot of the discriminant Z scores and group centroids of discriminate functions 1 and 2 for the three groups of adult sea
lampreys based on (a) morphometric characters and (b) fatty acid composition of heart total lipids. n - Group 1: Minho, Lima, Cávado,
Douro, Vouga and Mondego basins; # - Group 2: Tagus; , - Group 3: Guadiana.
doi:10.1371/journal.pone.0108110.g003

Table 4. Classification results obtained with the stepwise discriminant analysis cross-validation for morphometric characters to
determine the predictive accuracy level of the discriminant functions.

Groups N Percent correct Predicted Group Membership (count)

Group 1 Group 2 Group 3

Group 1 36 38.9 14 11 11

Group 2 28 57.1 7 16 5

Group 3 23 73.9 5 1 17

Total 87 54.0

N, number of individuals.
doi:10.1371/journal.pone.0108110.t004
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where northern lampreys occur, when compared with the other

oceanic feeding areas discussed here, may lead to a higher

morphological variability during the parasitic phase and, conse-

quently, a lower classification rate of lampreys from Group 1. Also,

this northern group may have lampreys originally from other

oceanic regions, namely the Galicia Interior Basin or even the

Biscay Abyssal Plain region, thus contributing to the low predicted

group membership.

Three morphometric variables were considered significant in

discriminating the three groups: eye length, second dorsal fin

length and branchial length. The larger eye and longer branchial

lengths of the Guadiana lampreys can be indicative of deeper

feeding grounds, and the need for a more efficient mechanism of

blood oxygenation. Comparatively, the relatively smaller eye and

branchial length of the Northern lampreys may reveal shallower

feeding grounds, and a less stressful demand for oxygen.

Interestingly, the Northern lampreys with the lower classification

rate, for both morphometric and heart fatty acid characters, was

composed by individuals with longer second dorsal fins and thus,

in theory, more capable for longer dispersions. The Guadiana

lampreys had the highest classification rates among the three

groups and the shortest second dorsal fin.

Heart total mass/body gutted mass ratio in the proposed
groups

The values of HTM/BGM ratio obtained for all individuals of

the three geographical groups were similar (,0.25%). This value is

consistent with previous studies also with sea lamprey (,0.3%;

[49]), and similar to the characteristic values obtained for other

poikilothermic vertebrates (0.08%–0.30% for fish, and 0.19% for

amphibians and reptiles), but distant from the values usually

determined in mammals (0.64%) [50].

In vertebrates this ratio reflects a direct relationship between the

size of heart and oxygen consumption [51]. One would expect that

lampreys from Group 3, with longer branchial lengths that may

maximize oxygen uptake in less oxygenated habitats, would have a

higher HTM/BGM ratio, but this was not the case.

Our results showed that individuals of Group 3 were

characterized by the highest HTLip content. This result can be

an indicator of increased rate of oxidative metabolism of fatty

acids, since in cardiac muscle over 70% of energy consumed for

electro-mechanical activity is covered by mitochondrial oxidation

of fatty acids [52]. A study among 16 species of teleost fish revealed

that glucose metabolism and fatty acid utilization increase with the

increased energy demand [53]. According to this, our result

suggests a higher demand for fatty acid oxidative metabolism of

animals sampled in Group 3, comparatively to the individuals

belonging to groups 1 and 2.

A lack of correlation between HTM and HTLip was expected

because under physiological conditions, myocardial triacylglicerol

stored in lipid droplets in the cytoplasm of the cardiac muscle cells

is in a steady state condition, where no major alterations in the

absolute amount of triacylglicerol fatty acids occur [52].

Heart tissue fatty acid profile in the proposed groups
For all three groups, heart tissue fatty acid profile showed that

SFA were the most representative. In groups 1 and 2 these were

followed by MUFA and then PUFA whereas in Group 3, the

MUFA and PUFA order was inverted. Moreover, since cardiac

skeletal muscle contains a significant content of phospholipids,

C16:0, C18:0, C16:1 and C18:1v9 high relative amounts are in

Table 5. Summary of discriminant loadings and potency index for morphometric and meristic variables.

Variables Discriminant loadings Potency index

Function 1 Function 2

O 0.74* 20.13 0.33

lD2 20.03 0.81* 0.27

B1-B7 20.32 20.60* 0.21

Acronyms of variables as defined in Figure 2; * largest absolute correlation between each variable and any discriminant function.
doi:10.1371/journal.pone.0108110.t005

Table 6. Summary statistics for the meristic characters analysed in the sub sample of 201 sea lamprey individuals included.

Meristic Mean SD Min. Max

Myo 73.1 1.6 68 78

TNteeth 148.6 8.0 128 170

AFteeth 39.5 3.8 29 49

LFteeth 62.4 2.9 54 69

PFteeth 37.2 2.7 31 46

TNrows 25.2 0.4 24 27

AFrows 7.0 0.0 7 7

LFrows 8.0 0.0 8 8

PFrows 9.2 0.4 8 11

IOcusps 7.5 0.7 6 10

Acronyms of variables as defined in Figure 2; SD, standard deviation; Min, minimum; Max, maximum.
doi:10.1371/journal.pone.0108110.t006
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accordance with the fact that those fatty acids are the most

common in the sn-1 position of phospholipids [38], [54]. Omega-3

fatty acids were also present In fact, the stable genetic basis of the

fatty acid composition of heart tissue phospholipids [18], [20],

[24], [25] in addition to the clear tendency for certain types of fatty

acids to be incorporated into the sn-1 and sn-2 positions of the

structural phospholipids, restrict the ability of the acyl chains to

reflect diet.

Based on that, the fatty acid pool of polar lipids is considered

stable over time and studies done with two stocks of reared

Atlantic cod had already demonstrated it [18].The C13:0 showed

higher values than expected and the explanation for these results is

not known. However, this fatty acid could be associated to the

presence of microbial sources considering some authors that C13:0

could be a useful of microbial presence on detritus [55–58].

Although ectothermic animals appear to increase the mem-

brane content of unsaturated fatty acids in response to colder

temperatures, a clear and direct relationship between specific

unsaturated fatty acids and quantitative measurements of mem-

brane fluidity has not been demonstrated [54]. In fact, a given

overall fluidity level can be met by various fatty acids composi-

tions, and often the fluidity of cellular membranes can be adjusted

by converting SFA to MUFA, while the PUFA levels remain

unaltered [59]. Because our results revealed that the unsaturated/

saturated fatty acid ratio and unsaturation index were not

significantly different among groups, this could mean that different

fatty acid signatures were not caused by a direct effect of

temperature on the phospholipids of heart tissue, but it is

reasonable to believe that fatty acid profiles are phenotypic

characters that must be correlated with differences in the abiotic

factors that characterized different habitats and results from

adaptation processes.

Physiological adaptation to environmental conditions
Fish species inhabiting areas where environmental conditions

are relatively stable and constant may develop a specialization of

their membranes phospholipids that allow them to adapt to the

environment where they live [60]. Habitats are different in many

ways (e.g. temperature, salinity, pressure), so it is reasonable to

hypothesize that environmental differences may lead to adjust-

ments of the expression of several genes, resulting, for instance, in

distinct heart tissue fatty acid signatures. Then, considering the

heart tissue fatty acid profile as a phenotypic variation, the

presence of different fatty acid signatures likely indicates limited

mixing among groups and may offer a practical measure for stock

discrimination [18], [23]. The differences in the heart tissue fatty

acid profile of individuals of the geographical groups seem to result

from the influence of environmental factors during the oceanic

trophic phase of the lampreys’ life cycle and to the geographical

isolation promoted by seabed topography.

If this hypothesis is correct, it is possible that the oceanic phase

of the sea lamprey life cycle, following the dispersion period during

the juvenile trophic migration, is represented by a much less

mobile adult stage restricting the mixture of lampreys from

different geographical groups. This limited dispersal in marine

environment was also highlighted in a recent work by Spice et al.

[61] with Pacific lamprey (Entosphenus tridentatus Gairdner in

Richardson 1836) and supported by Silva et al. [28] that suggest

that at least a fraction of the sea lamprey population can reach

adult size in approximately 14 months of hematophagous feeding.

Moreover, part of this parasitic period can be spent feeding in

rivers and estuaries before the trophic migration to the sea [62], so

the marine stage might be even shorter than one year.

Marine trophic phase and target host species
Dispersal is often density-dependent in a wide variety of taxa

[63]. Due to population density, dispersal may relieve pressure for

resources in an ecosystem, and competition for these resources

may be a selection factor for dispersal mechanisms [64].

It is likely that the absence of large pelagic fish species

(inexistence of salmonids and drastic reduction of shads Alosa
sp.) in the southwest and south coasts of Portugal, induces sea

lamprey juveniles undergoing their marine trophic phase to target

benthic fish species [65]. On the other hand, the northern

Portuguese river basins, which have a higher proportion of

individuals in relation to Tagus and Guadiana groups [14], [66],

can prey upon pelagic fish and thus experience a wider dispersion

throughout the neighbouring marine areas and, consequently,

river basins. Sea lampreys from the west coast of Portugal

apparently present some clues that indicate the existence of two

different trophic pathways, one typical of a top predator of a

marine food web with a planktonic base, and the other including

both planktonic and benthonic species [65]. Since benthonic fish

are usually less vagrant in the adult stage when compared with the

more mobile pelagic species [67], the migrations of adult sea

lampreys between feeding areas (i.e. stocks) would be attenuated,

and differences in the fatty acid profile of heart most likely arise

under those circumstances.

Juvenile dispersal, feeding areas and spawning migration
The three sea lamprey groups here identified are probably

associated to the three isolated abyssal plains (and/or nearby

continental slopes) off western Iberian Peninsula, and it is likely

that they constitute three different stocks. Throughout the

Table 7. Mean (6 standard deviation) heart total mass (HTM, g), heart total mass/body gutted mass ratio (HTM/BGM expressed in
percentage), mean heart total lipids (HTLip, expressed in g per g of dry tissue), heart water loss (HWater, expressed as percentage)
and sex ratio of sea lamprey individuals analysed.

Variables Group 1 Group 2 Group 3

HTM 2.8960.5*b 3.3460.4*a,c 2.7660.3*b

HTM/BGM 0.25 0.25 0.24

HTLip 0.24*b,c 0.15*a,c 0.31*a,b

HWater 73.0762.7 71.2361.9 75.3261.2

Sex Ratio (male/female) 0.48 0.46 0.68

Cases in which the relative amounts of a fatty acid are significantly different (P, 0.001) among the groups are marked with signs: *a: significantly different from Group 1;
*b: significantly different from Group 2; *c significantly different from Group 3.
doi:10.1371/journal.pone.0108110.t007
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Table 8. Relative amounts, as percentage of sum (mean 6 sd), of fatty acids in heart tissue total lipids of sea lamprey individuals
analysed.

Fatty acid Group 1 Group 2 Group 3

SFA C10:0 2.8462.09*b 0.7461.10*a;c 3.3661.54*b

C12:0 0.0860.16*c 0.0660.05 ND

C13:0 7.5165.76*b;c 2.2064.22*a;c 13.4765.99*a;b

C14:0 1.5060.99*c 1.7560.46*c 0.7060.32*a;b

C15:0 ND ND 0.1560.14*a;b

C16:0 15.9264.86*b;c 20.3962.26*a;c 10.9761.90*a;b

C17:0 ND ND 0.9060.23*a;b

C18:0 7.0661.48*b;c 9.1361.49*a;c 5.5560.95*a;b

C20:0 0.2061.63*b;c 0.8862.10*a;c ND

C22:0 0.2260.62 0.2860.30 ND

SSFA 39.52 39.32 37.92

MUFA C14:1 ND 0.0660.06 ND

C16:1 9.9264.2*b;c 13.6962.59*a;c 6.0961.69*a;b

C18:1v9 16.6466.23*b 22.9562.67*a;c 12.8662.55*b

C20:1v9 0.4960.47*b;c 1.060.46*a;c 0.2860.09*a;b

C22:1v9 ND 0.1460.19 ND

SMUFA 28.40 38.33 19.67

PUFA C18:2v6 0.2960.23 0.3560.14 0.3060.21

C20:2 0.1461.20 *b;c 0.3263.11*a;c ND

C20:3v6 ND 0.1660.33 ND

C20:3v3 2. 6961.48 3.1061.07 3. 1560.95

C20:4v6 ND 0.1960.18 ND

C20:5v3 2.6060.99 2.3460.61*c 3.1160.54*b

C22:2v6 0.1260.52 ND ND

C22:5v3 3.4661.73 3.4560.92 4.2560.78

C22:6v3 8.2164.62 6.3261.74*;c 10.4563.14*b

SPUFA 18.83 17.72 21.38

S(PUFA+MUFA) 47.23 56.05 41.05

SUFA/SSFA 1.29 1.45 1.24

Sv3 16.96 15.21 20.96

Sv6 0.29 0.70 0.30

C22:6v3/C20:5v3 3.16 2.70 3.36

SEPA+DPA+DHA 14.27 12.11 17.81

SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids. Cases in which the relative amounts of a fatty acid are significantly
different (P, 0.001) among the groups are marked with signs: *a: significantly different from group 1; *b: significantly different from group 2; *c significantly different
from group 3. Fatty acids C6:0 and C8:0 are not presented because were not detected in each one of the three groups. ND, not detected.
doi:10.1371/journal.pone.0108110.t008

Table 9. Classification results obtained with the stepwise MDA cross-validation for heart tissue fatty acids to determine the
predictive accuracy level of the discriminant functions.

Number of individuals classified into group

Groups N Percent Correct North/Central Tagus Guadiana

North/Central 36 72.2 26 8 2

Tagus 19 89.5 1 17 1

Guadiana 19 100 0 0 19

Total 74 83.4 – – –

doi:10.1371/journal.pone.0108110.t009
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juveniles’ trophic migration it is likely that some mixture between

groups occurs, particularly between the northern (Group 1) and

the Tagus (Group 2) stocks, which would be in agreement with the

dispersal phase of some marine fish species during the juvenile

stage in the same geographical area [68]. The lack of genetic

differentiation between groups (results not shown, unpublished

data) corroborates this scenario: since adults present significant

levels of differentiation at the morphological and physiological

levels, and there is genetic mixing between groups, the juvenile

migration is most likely accompanied by dispersal among basins.

During the spawning migration, lampreys seem to preferentially

move north, probably attracted by the exceptional freshwater flow

originated in northern river basins, particularly those north of river

Douro, inclusive. In fact, eight animals sampled in the northern

group presented characteristics of the Tagus’ group.

The bulk of the juvenile lampreys from the isolated Guadiana

river basin (Group 3) probably migrate to the feeding areas located

at the Horshoe Abyssal Plain or nearby areas, which is located on

the southern Iberian margin off western the Mediterranean Sea,

and return to spawn in their river of origin. The impact of the

Mediterranean Outflow Water (MOW) in the potential feeding

area of animals entering the River Guadiana is particularly evident

between 500 to 1400 m and shows higher temperatures and

salinities than the North Atlantic Central Water (NACW) [69].

The unique conditions caused by the MOW influence may be

responsible for the high distinct heart tissue fatty acid profile found

in lampreys from group 3, as revealed by the 100% predictive

accuracy level. In the oceanic zone over the continental slope,

from December to February the dominant current (depth up to

1200 m) is oriented northward (Ana Teles-Machado and Álvaro

Peliz, unpublished data). This may impel adult sea lampreys

approaching the continent in the beginning of the spawning

migration to the north with the prevailing current. Moreover, near

the continental shelf, the dominant current is southward, and

migrating sea lampreys may be once again oriented northward

attracted by the odours transported from the northern rivers

basins, which present higher ammocoete densities and river

discharges than the Tagus or Guadiana river basins. This might

explain why the North-Central group showed the occurrence of

eight lampreys from the Tagus group and two from the Guadiana

group.

In conclusion, the significant morphological and physiological

differences found between groups are most likely the result from

the influence of environmental factors to which lampreys may

have been exposed during the oceanic trophic phase of the life

cycle, rather than derived from a genetic basis. This would imply

that the oceanic phase of the sea lamprey life cycle is composed by

a dispersion period during the juvenile migration, followed by a

much less mobile adult stage, which will restrict the mixture of

adult lampreys from different geographical groups, segregated by

seabed topography.

Implications for conservation
The population structure put in evidence in this work have

important implications in terms of management and conservation

of P. marinus in Portugal, where it is considered threatened.

Three stocks of this species are apparently present in Atlantic

waters off country: the northern, the Tagus and the Guadiana

stocks. The first includes individuals from Minho, Lima, Cávado,

Douro, Vouga and Mondego river basins and, possibly, from

North-western Spain (Galician rivers; not included in this study). A

considerable number of lampreys still use the above referred basins

for reproduction [66], except in River Douro, where apparently

there are no suitable conditions for nest building in the available

20 km of river stretch downstream of the first obstacle [3]. The

probable existence of a common stock in north-western Iberian

waters reinforces the need for international joint efforts to manage

this halieutic resource, commercially exploited both in Portuguese

and Spanish watersheds.

Tagus and Guadiana stocks are, however, priority in conser-

vation terms. The number of lampreys entering these basins,

particularly in the southern Guadiana river basin, is very scarce.

The existence of a lamprey stock composed mainly by sea

lampreys originally from the Guadiana basin raises some concerns

about the future of the species in its southern limit of distribution,

mainly due to the hydric stress known to occur in this basin, and

exacerbated by the potential effects of climate change.
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