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RESUMO 

 

 

Estudos sobre o declínio do sobreiro: uma abordagem integrada 

 

 

Neste trabalho abordaram-se vários aspectos relacionados com o declínio do sobreiro 

(Quercus suber). Uma análise exaustiva á bibliografia realçou que o sobreiro é 

moderadamente susceptível a Phytophthora cinnamomi, ocorrendo declínio quando há 

encharcamento do solo e limitações à expansão de raízes. Também foram identificados 

alguns aspectos que foram alvo de investigação mais detalhada, como a utilização de 

métodos robustos para detecção de P. cinnamomi e conhecimento acerca da fisiologia 

associada ao declínio. Métodos moleculares para diagnose de P. cinnamomi de amostras 

de solo revelaram-se inapropriados devido à combinação da baixa concentração do 

inóculo com a reduzida quantidade de amostra passível de analisar. Em relação à 

fisiologia do declínio, duas respostas ao défice hídrico foram detectadas, uma levando à 

morte por falta de fotoassimilados, outra por falha no transporte hídrico. Por fim, a 

utilização de ectomicorrizas em condições naturais mostrou ser uma abordagem a 

aprofundar para a melhoria sanitária das árvores. 
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ABSTRACT 

 

 

Studies on cork oak decline: An integrated approach 

 

 

This work integrates various aspects related to cork oak decline. A thorough 

bibliographic analysis stressed that cork oaks (Quercus suber) are moderately susceptible 

to Phytophthora cinnamomi, and decline is likely to occur under conditions limiting roots 

expansion and causing waterlogging. It was also identified some important aspects 

subjected to detailed research, like the prerequisite of robust methods for P. cinnamomi 

diagnosis and knowledge about the tree physiology associated to decline. Molecular 

methods for P. cinnamomi diagnosis from soil samples proved unsuitable because of the 

combination of reduced inoculum concentration in the soil and low sample size possible 

to analyze. In relation to the physiology of decline, two responses to water stress were 

detected, one leading to mortality caused by lack of assimilates and another caused by 

failure in water transport. Finally, the use of ectomycorrhizal under natural conditions has 

proven to be an interesting approach for trees health status improvement.  
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1 
 

1- GENERAL INTRODUCTION 
 

 

Abnormal episodes of cork (Querus suber) and holm oaks (Q. rotundifolia, syn. 

Quercus ilex spp. rotundifolia, Q. ilex spp. ballota, Q. ballota; Lousã and Fabião 1997) 

mortality in the Mediterranean basin have been reported since the beginning of the XX 

century, which were associated to climatic events, and cultural practices in the 

woodlands (Baeta Neves 1949, 1954; Natividade 1950, Macara 1975). During the 

1980s, cork and holm oak mortality was associated to the soilborne pathogenic 

Phytophthora cinnamomi (Brasier 1992a, 1993) and since then it has been considered 

by many authors the main cause of cork and holm oak decline, though coupled with 

unfavorable environmental conditions (Cobos et al. 1992; Robin et al. 1998; Gallego et 

al. 1999; Moreira 2001; Sánchez et al. 2002). In cork and holm oak woodlands there 

were indications that abiotic factors may also be strong involved in the observed decline 

(Cabral & Sardinha 1992, Sousa et al. 2007). Ribeiro & Surový (2007) demonstrate, in 

the first national forest inventory of dead trees in cork oak stands, that limitation in soil 

depth and high precipitation were statistically linked to high mortality indices. Although 

the authors did not include in the study biotic factors like P. cinanmomi distribution, 

they reinforce the conclusions that abiotic variables are linked to oak mortality. Such 

studies raised some concerns about the relative importance of those factors in 

Mediterranean oak decline. One could question if mortality linked to excess soil 

moisture was mediated by P. cinnamomi, or, on the other hand, trees growing in soils 

with no depth limitations could co-exist with the pathogen with no expenses of their 

health. Only after identifying the main actors and their correlations in tree decline will 

be possible to move for the next step, such as development of approaches to prevent 

decline. First of all, in order to achieve these objectives, it would be needed a reliable 



 

2 
 

methodology for P. cinnamomi diagnosis. Former studies faced some inherent 

difficulties in detecting P. cinnamomi in the field, leading to a probable underestimation 

of the pathogen and difficulties in relating its occurrence with abiotic factors and tree 

health status.  

Other aspect should also be included in those studies, namely physiologic 

responses of trees under decline. In general, the link between the pathogen infection, 

abiotic factors and the overall tree physiology is poorly understood, hence the 

development of the disease is unclear (Jönsson 2006). P. cinnamomi is primarily a root 

pathogen of woody species and causes rot of fine feeder roots; secondary symptoms 

resemble those of drought: the crown thins, foliage becomes chlorotic, wilt and 

epicormic shoots form (Brasier et al. 1993, Robin et al. 1998), but it is lacking studies 

towards the comprehension of tree physiologic status associated with decline. Former 

studies were performed mainly with infected seedlings and centered essentially in plant 

water relations, were a significant reduction in leaf water potential and stomatal 

conductance was observed (Maurel et al. 2001, Luque et al. 2002). It is referred that 

mortality of oak seedlings is strongly related with root pruning by the pathogen, causing 

impairment in water absorption and, therefore, plant water stress (Robin et al. 2001; 

Clemenz et al. 2008). However, adult trees have a more complex root system, with sink 

roots accessing deep groundwater tables and fine-roots mainly distributed in the upper 

soil layer (Otieno et al. 2006, Surový et al. 2011). Thus, infection in their root system 

may have different effects on adult trees. Several subjects need answers, like what 

physiologic responses are associated to pathogen infection and the role of fine-roots in 

tree decline.  

Since P. cinnamomi attacks fine-roots, other interesting approaches would be 

related to the role of ectomycorrhizae in oaks health status and, particularly, in 
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protection against the pathogen. Ectomycorrhizae (ECM) are symbiotic of plants and 

widely known to improve their nutritional status (Smith and Read 1997; Quarles 1999a, 

b, Marx et al. 2002). Moreover, they form hyphal sheaths around roots eventually acting 

as physical barrier against root attack by pathogens, which was verified on sweet 

chestnut (Castanea sativa) and in shortleaf pine (Pinus echinata) roots, where 

mycorrhizal root tips with complete mantle were not infected by Phytophthora (Marx & 

Davey 1969 a,b; Brazanti et al. 1999). Other mechanisms involved in disease 

suppression such as a chemical barrier, antibiosis or antifungal compound production, 

eventually acting in synergism, may also protect mycorrhizal plants against root 

pathogens (Zak 1964; Marx 1973; Brazanti et al. 1999). There are several studies in 

controlled conditions relating the protective effect of ECM against root pathogens (ex: 

Marx & Davey 1969a, b; Brazanti et al. 1999) but, under natural conditions, studies 

were focused in the differences on natural ECM colonization according to tree health 

status. In somestudies in declining cork oak sites, root tip colonization was reported to 

remain substantial in declining trees, but a switch between some ECM species occurred 

in direction to low-biomass ectomycorrhizae with less abundant extramatrical hyphae, 

which are presumed to require less carbon from the host tree (Kuikka et al. 2003; 

Saravesi et al. 2008; Blom et al. 2009; Lancellotti & Franceschini 2013). However, it 

was suggested that healthy trees may eventually be more selective in ECM symbioses 

than declining trees that are more dependent on ECM response diversity (Blom et al 

2009). If declining trees were more dependent of available ECM diversity, they could 

be favored by artificial applications of selected ECM inoculum. Additionally, other 

studies reported less ECM in declining trees (ex: Causin et al. 1996; Scott et al. 2013). 

Such cases could also be favored by artificial ECM application, providing abundant 

inoculum of selected species to enhance colonization in declining trees. Former 
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introduction of ECM and fertilizers in declining adult cork oaks showed an overall 

improvement in tree health status (Symbio docs), suggesting the potential of ECM 

application in health improvement and, eventually, on P. cinnamomi suppression. There 

are not regular methods to prevent P. cinnamomi infection worldwide besides cultural 

practices to avoid spread of the pathogen to uninfected forest (Dawson & Weste 1985, 

Brasier & Jung 2003) and the use of chemicals like metalaxyl and potassium 

phosphonate. Metalaxyl is highly selective against Oomycetes, however it was reported 

to progressively loss efficacy against P. cinnamomi (Darvas 1983, Gouveia 2004). 

Potassium phosphonate injections stimulate the defense mechanisms of the trees (Guest 

& Grant 1991, Fernández-Escobar et al. 1999, Navarro et al. 2004), but results with 

Mediterranean oaks were unsatisfying (Solla et al 2009). Experiments in natural 

conditions with ECM application should therefore be performed to analyze their effect 

in tree health, in order to assess their subsequent usefulness as biocontrol of root 

pathogens.  

 

 

1.1- GENERAL OBJECTIVES  

 

In this study it was realized an extensive and deep analysis of the published 

works related to cork and holm oak decline, namely P. cinnamomi surveys, 

pathogenicity tests, studies about the influence of site characteristics in tree decline and 

approaches to control the disease (chapter 3). Goals of this chapter were: 1) to identify 

the main shortcomings on the association between P. cinnamomi and oak decline, 

suggesting, when possible, some approaches to overcome them; 2) to assess the relative 
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importance of each factor involved in decline and 3) revise the role of P. cinnamomi in 

cork and holm oak decline.  

In chapter 4 it was tested and compared two methodologies for P. cinnamomi 

diagnosis, both to be applied in soil rhizosphere under the host trees. The first one, 

baiting selective-medium method, is widely used but it is also referred to presents some 

limitations, resulting in the production of false negatives. On the other hand, DNA-

based molecular diagnostics have been overwhelmingly developed to identify, diagnose 

and study Phytophthora spp. (Cooke et al. 2007). Recently, it was published a protocol 

concerning molecular methods to diagnose P. cinnamomi from total DNA extracted 

from soil samples (William et al. 2009). In this chapter both methods were tested, 

difficulties were identified as well possible solutions to overcome them in order to 

obtain a reliable diagnosis method for P. cinnamomi occurrence. 

The next approach in this study was a contribution to the comprehension of cork 

oak decline, particularly to understand the physiologic status of the trees showing 

different decline symptoms. Unspecific symptoms like tree defoliation and upper 

branches dieback, or alternatively a fast drying of the leaves, have been observed in 

declining trees (Cobos et al. 1992; Tuset et al. 1996; Gallego et al. 1999; Moreira 2001; 

Ruiu 2006; Sousa et al. 2007). They are usually associated to water stress, caused or not 

by P. cinnamomi. Nevertheless, only after analyses of the main physiologic processes 

related to decline symptoms it will be possible to generate further studies on the 

functional relation between pathogen infection and host symptoms. Thus, chapter 5 was 

focused on 1) the association between visible symptoms of decline and physiologic 

status of the trees, with emphasis in tree water relations, and, additionally, 2) the study 

was complemented with an exploratory approach on physiologic status of the trees with 

P. cinnamomi in the rhizosphere.  
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Finally, last chapter was toward approaches that could eventually contribute for 

prevention of P. cinnamomi infection, at least during the first critical years of the 

seedlings after reforestation in the field. Thus, it was tested ectomycorrhizal application 

in cork oak seedlings in nurseries with non-sterile conditions and also in an established 

young cork oak trees in the field. The objective was to test if application of 

ectomycorrhizae in natural conditions would be effective in colonizing host trees for 

further applications regarding inhibition of P. cinnamomi infection and/ or improvement 

of tree health status. 
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2.1- BRIEF DESCRIPTION OF THE SPECIES 

 

2.1.1- The montado system 

 

The cork (Quercus suber) and holm oaks (Q. rotundifolia) are sclerophyllous 

evergreen species from the family Fagaceae, endemic to the Western Mediterranean 

region. The climate of this region is characterized by summer drought and mildly cold 

winters. Trees must withstand a long hot and dry summer season when water deficits 

are associated with high light intensity and temperatures, being alleviated by the autumn 

rains (Vaz et al. 2010). Those species survive drought thanks in part to their extensive 

and deep root system that tap water from deeper soil, maintaining water status and 

xylem conductance above lethal levels throughout the summer drought periods (Pausas 

et al. 2009). Both species requires high demands in light, but cork oaks dominate the 

moister areas whereas holm oak occupies the drier inland areas. This geographical 

distribution seems to reflect different tolerances to drought between species (David et 

al. 2004). Cork oaks has a most distinctive characteristic, a secondary meristem, the 

phellem, that produces an outer coat of insulation consisting of corky bark of 

continuous layers of suberized cells that may have evolved as an adaptation to fire; a 

tree continuously generates cork that can be stripped without severe damage at regular 

intervals, usually each nine years, to provide commercial cork (Pausas et al. 2009, 

Toribio et al. 2005). Cork oaks are modest in regard to soil requirements, growing sandy 

and clayey soils of granitic and schistic origin, but free of calcium carbonate; on the 

other hand, holm oaks are adapted to a wide range of edaphic conditions growing in all 

type of soils, consequently occupying a bigger area than cork oaks, though being ousted 

by them on the richer and wetter sites (ATLAS 1987, Gonzalez 1993). 
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Cork and holm oak woodlands are of high conservation and socioeconomic 

value within their areas of geographic distribution around the Mediterranean basin: 

Portugal, Spain, southern France, Sardinia, Algeria, Morocco and Tunisia (DGRF et al. 

2007). They dominate the forestry layer of the agro-silvo-pastoral system called 

‘‘montado’’ in Portugal or ‘‘dehesa’’ in Spain, forming a savannah-like landscape (fig. 

2.1).  

 

Figure 2.1: Montado system with cork oaks (Quercus suber), some stone pine (Pinus pinea) 

native pasture and cattle, Herdade da Machoqueira do Grou, Coruche, Portugal 

 

It occupies approximately 5.3 million hectares of woodland in Spain (Sánchez 

and Garcia 2007) and 1.2 million hectares in Portugal (DGRF 2007). The herbaceous 

layer is comprised of either cultivated cereals (oats, barley, wheat) or, more commonly, 

native vegetation dominated by annual species, which are used as grazing resources 

(Joffre et al. 1999); the livestock layer includes sheep, goats, Iberian pigs that graze the 

seasonal acorn production, and cattle. Montados also support productions of natural 

pasture, mushrooms, honey, and are natural habitat for hunting species, and many more 
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(Pinheiro et al. 2008). Diversity of production—forage, acorn, wood, cork, charcoal—is 

the characteristic of these systems and the long-term ecological sustainability derives 

from the sub-optimization of the resources for many centuries (Joffre et al. 1999). 

Montados also have a significant environmental value related to biodiversity 

preservation, carbon sink, soil conservation, microclimate maintenance and energy 

conservation (anonymous 2013). 

In Portugal, permissions to cut down cork and holm oaks, independently of the 

health status of the trees, must be granted by the ‘‘Autoridade Nacional Florestal.’’ 

 

 

2.1.2- Phytophthora cinnamomi 

 

According to recent classifications based on molecular phylogeny, P. cinnamomi 

is classified in the kingdom Chromista, phylum Oomycota, order Peronosporales, 

family Peronosporaceae (Hardham 2005), though for some authors Phytophthora 

species are considered as members of the “union of fungi”, reflecting their fungus-like 

hyphae and nutrient acquisition (Anderson 2006). Together, fungi and Oomycetes cover 

the majority of eukaryotic plant pathogens and their convergent evolution seems to have 

forced the development of similar infection strategies, but their significant physiologic 

and biochemical differences are reflected in the large variations observed in sensitivity 

to conventional fungicides; some fungicides act by inhibition of the ergosterol 

biosynthesis pathway on fungi; others inhibit chitin synthase on fungi cell walls, 

however, oomycetes do not have the ergosterol pathway or chitin in their cell walls 

(Latijnhouwers et al. 2003). 
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P. cinnamomi is a soilborne oomycete believed to be of tropical or subtropical 

origin that is widely distributed in temperate and tropical regions. It is suggested to have 

spread throughout Europe in the nineteenth century, when sweet chestnut (Castanea 

sativa), a highly susceptible host was found affected by the so called ink disease in 

Portugal and Spain (Brasier 1996; 2000). Zentmyer (1980) listed approximately 950 

host species and since then that number has increased considerably (Hardham 2005). P. 

cinnamomi is the most widespread of Phytophthora spp., has the largest host range and 

causes extensive economic losses in agriculture, horticulture and forestry, being a major 

threat to natural ecosystems and biodiversity (Zentmyer 1983; Hardham 2005).  

P. cinnamomi produces three types of spores: zoospores, chlamydospores and 

oospores. Somatic hyphae form multinucleate sporangia that, under lower temperatures 

and in the presence of free water, cleave and release 10–30 uninucleate biflagellate 

wall-less zoospores which are attracted to the zone of elongation of the host root tip, 

where they encyst forming walled cysts that germinate and penetrate the plant. 

(Zentmeyer 1980; Ribeiro 1983; Hardham 2005). Contrary to most Phytophthora spp., 

P. cinnamomi is more attracted to hosts than to nonhosts (Carlile 1983). In susceptible 

plants like avocado, brown lesions in small roots appear in 24-36 hr after inoculation 

and mycelium is found throughout the root within 72 hr (Zentmeyer 1980). Within 2 or 

3 days in a susceptible host, sporangia will form on the plant surface and the asexual 

cycle may be repeated many times in quick succession, rapidly amplifying the inoculum 

potential in the infected area (Hardham 2005). During warm and moist conditions the 

mycelia produce asexual sporangia, however, under less favorable conditions the 

production of asexual chlamydospores predominates (Cahill et al 2008). P. cinnamomi 

hypha readily forms clusters of thin-walled chlamydospores that germinate through 

germ tubes; they can persist in dead roots and in the soil, thus making them one of the 



 

12 
 

survival forms of this pathogen (Zentmeyer 1980). In fact, the role of chlamydospores is 

dynamic with a saprobic life cycle and can germinate independently of a host and in 

limited short term competition with other soil organisms (Weste 1983a). Oospores are 

sexual spores produced after fertilization of oogonia by antheridia. P. cinnamomi is 

usually regarded as heterothallic species, where two mating types, designated as A1 and 

A2, are required for oospore production. However, the A2 type can act as homothallic, 

forming oospores by selfing under special conditions, such as colony aging and specific 

chemicals produced by Trichoderma spp. or avocado roots (Zentmeyer 1980; Brasier 

1992b). A1 type has limited distribution whereas A2 type is widespread geographically 

and is associated to severe outbreaks on crops and ornamentals in southern Australia, 

Europe, and America (Zentmeyer 1980; Brasier 1992b). 

P. cinnamomi parasitizes living roots, however, it has some saprophytic ability 

in soils with low microbial activity, and particularly in saturated soils were it can 

compete with other soil microorganisms (Weste 1983b; Zentmeyer 1980; McCarren 

2006). It persists in soil or infected plant material and when conditions favoring 

mycelium growth prevail, the pathogen enters the asexual sporulation cycle (Hardham 

2005). This pathogen is known to survive for as long as 6 years in moist soil. Moisture 

is the key factor in the establishment, spread and longevity of the pathogen (Zentmyer 

1980). P. cinnamomi is primarily a root pathogen of woody species and causes rot of 

fine feeder roots; larger roots are only occasionally attacked (EPPO 2004). Secondary 

symptoms resemble those of drought: foliage becomes chlorotic, wilt and, depending on 

the severity of the root rot, dies back and the crown thins, epicormic shoots are formed 

but wilt, turn brown and die; the pathogen may cause also stem cankers which often 

result in sudden death (EPPO 2004). Host susceptible reactions vary from rapid 

mortality following infection to field tolerance (Zentmyer 1980). Initiation of plant 
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infection involves zoospore attraction by root exudates, encystment and cyst 

germination in the root cap cell zone and development of mycelium in the cortical cells, 

phloem and xylem of the infected roots, although the pathogen is not able to hydrolyze 

lignified cell walls (Davison et al 1994).  

P. cinnamomi was first described as a root pathogen of cork oak in 1944 by 

Lopes Pimentel (1946) although it was first misidentified as P. cambivora (in Carvalho 

1993). This pathogen was also isolated from cortical cankers in cork oak trees in Russia 

in the 1950’s (Globa-Mikhailenko 1960) and in California in the 1970’s (Mircetich et al 

1977). Two different populations were detected in southern Iberia following molecular 

studies, though there were no differences in pathogenicity between both populations 

when artificial inoculations were performed (Caetano et al 2007). Although it has been 

reported differences in virulence of isolates from different origins to some hosts (Robin 

& Desprez-Loustau 1998), no significant differences between three P. cinnamomi 

isolates were found in respect of the frequency of mortality, wilting and leaf necrosis of 

holm and cork oak seedlings (Robin et al 2001). 

 

 

2.2- Mortality events of cork and holm oak trees in Mediterranean 

basin 

 

Abnormal episodes of cork oak (Quercus suber) mortality with unknown etiology have 

been reported since the end of the nineteenth century and consistently throughout the 

twentieth century, in Portugal and Spain (Baeta Neves 1949, 1954; Natividade 1950; 

Macara 1975; Cabral and Sardinha 1992; Brasier et al. 1993; Carvalho 1993; Sousa et 

al. 2007). Natividade (1958) refers that in 1951 about 246,000 dead or injured cork oaks 

were cut down in Portugal. A diachronic analysis based on aerial photographs of the 
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southwest Portugal indicated that between 1958 and 1987 the area of cork oak 

distribution remained stable, though there was a noteworthy reduction in their density 

(Carvalho et al. 1992). No holm oak (Quercus rotundifolia) mortality was referred 

during that period (Carvalho 1993). During the 1980s, there was another mortality 

outbreak in the Iberian Peninsula, increasing its severity by the end of the decade, and 

this time affecting both cork and holm oaks (Brasier 1992a, 1993; Cobos et al. 1992; 

CAMA 2001; Moreira 2001). For example, in Portugal, between 1990 and 1992, there 

was a substantial increase in the defoliation level of cork and holm oak trees and 

authorization to land owners for cutting down dead or injured cork trees increased about 

70 % (DGRF 2007; Sousa et al. 2007). In France and Italy, cork and holm oak mortality 

was perceived after 1989 (DFCI 1991; Ruiu 2006). Following this outbreak, mortality 

in south Portugal and Spain was investigated with regard to the possible presence of the 

fungus causing North American oak wilt (Ceratocystis fagacearum, Brasier et al. 1993); 

these authors found no evidence of this disease, however, observations of decline 

symptoms and its distribution in the field suggested a root disease caused by a soil and 

waterborne oomycete organism. Affected trees were found to have undergone loss of 

fine feeder roots, and some showed extensive lesions on major roots. Brasier and 

collaborators isolated the oomycete Phytophthora cinnamomi in six out of the nine 

surveyed declining sites in Spain and suggested that the pathogen was a major factor in 

the rapid oak mortality in both Spain and Portugal (Brasier 1992a, 1993). Following 

Brasier et al. (1993) survey, several others’ prospections were carried out in declining 

stands in Portugal, Spain and France, where P. cinnamomi was isolated from the 

rhizosphere with relative success (Cobos et al. 1992; Robin et al. 1998; Gallego et al. 

1999; Moreira 2001; Sánchez et al. 2002). Several other pathogens and pests have been 

associated with cork and holm oak decline, varying in their aggressiveness to the trees 
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(Macara 1974, 1975; Ferreira & Ferreira 1989; Luque & Girbal 1989; Gallego et al. 

1999; Riziero et al. 2002; Sicoli et al. 2002; Sánchez et al. 2003b; Santos 2003; Jiménez 

et al. 2005; Machado 2005; Romero et al. 2007; Sousa et al. 2007; Corcobado et al. 

2010, Torres-Vila et al. 2012). Although their involvement in tree mortality may be 

locally relevant, with emphasis for Botryosphaeria spp. in Catalonia, Spain (Luque & 

Girbal 1989), only P. cinnamomi was associated with the overall mortality outbreaks 

occurring in South Europe since the 1980s (Brasier 1992a; Cobos et al. 1992; Robin et 

al. 1998; Moreira 2001;Sánchez et al. 2002). In North Africa, a serious decline in cork 

and holm oak stands has also been reported, however, to our knowledge P. cinnamomi 

was not recovered in any of the surveyed stands, and loss of vitality appears to be 

associated with climate, other diseases, pests and human intervention (Ben Jamaâ et al. 

2002; Bouhraoua et al. 2002; Chakali et al. 2002; Benia et al. 2005; Bouhraoua & 

Villemant 2005; Hasnaoui et al. 2005; Assali & Falca 2007; Habib 2007; Sid Ahmed 

2007; Ben Jamaâ & Piazzetta 2010; Ferka-Zazou et al. 2010; Ghaioule et al. 2010; 

Khouja et al. 2010; Linaldeddu et al. 2010; Mannai et al. 2010).  

 

 

2.3 - Symptoms of cork and holm oak decline 

 

Two main types of syndromes associated with decline have been observed 

(Cobos et al. 1992; Tuset et al. 1996; Gallego et al. 1999; CAMA 2001; Moreira 2001; 

Ruiu 2006; Sousa et al. 2007):  

1) a sudden death of the tree, characterized by the fast drying of the crown followed by 

tree death in one or two seasons, particularly in early summer after the winter rains and 
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in early autumn following the dry season; yellow or brown leaves may remain attached 

to the tree for some time (fig. 2.2 a). 

2) a progressive decline and gradual loss of foliage, where the first symptoms are drying 

of the top of the tree, sprouting of epicormic shoots, a more intense leaf drop which may 

affect the whole crown or only some branches (fig. 2.2 b).  

Affected trees occur either in groups of variable size within a forest that appears to be 

healthy, or dispersed throughout the forest (Cobos et al. 1992; Gallego et al. 1999). 

Observation of the root system showed many dead fine roots, even in trees with low 

defoliation levels (Moreira 2001), and particularly in affected trees in moister soils 

(Brasier et al. 1993). Other symptoms not so frequent are tarry exudations on trunks and 

inner bark lesions or cracks in the stem bark and low branches (Brasier et al. 1993; 

Gallego et al. 1999; Sánchez et al. 2003a). Robin et al. (1998) observed bleeding 

cankers at the base of some cork oak trees not severely declining and Phytophthora spp. 

were recovered with a high frequency from canker tissue samples. Other recovered 

pathogens from canker or exudations in upper branches were Brenneria quercina and 

Hypoxylon sp. (CAMA 2001). Sánchez et al. (2003a) refer that decline symptoms are 

very unspecific. Chlorosis and wilting, defoliation, branch lesions, the absence of feeder 

roots can be ascribed to drought, insect defoliators and pathogens like Botryosphaeria 

spp. (anamorph: Diplodia ssp) or Biscogniauxia mediterranea (de Not) Kuntze (syn. 

Hypoxylon mediterraneum (Gallego et al. 1999; CAMA 2001; Santos 2003; Machado 

2005; Franceschini 2007). 
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Figure 2.2: Symptoms of decline in cork oaks (Quercus suber) at Herdade da Machoqueira do Grou, Coruche, Portugal  

A) Sudden Death; B) Chronic decline 



 

18 
 

  



 

19 
 

 

 

CHAPTER 3 

 

 

 

Decline of Mediterranean oak trees and its 

association with Phytophthora cinnamomi: 

Analysis of the bibliography 
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3.1- ABSTRACT  

 

Mortality events in cork and holm oaks have occurred in the Mediterranean 

basin since the beginning of the XX century, but severity of decline increased during the 

1980s. By that time, the exotic soil borne pathogen Phytophthora cinnamomi was often 

recovered from declining stands and since then it has been considered the main factor 

associated with decline. This work analyses data concerning P. cinnamomi surveys in 

cork and holm oaks trees, pathogenicity tests carried out in controlled experiments, 

studies about the influence of site characteristics in tree decline and approaches to 

control the disease. Results of field surveys showed that the pathogen is widespread and 

pathogenicity tests suggested that host susceptibility to the pathogen is moderate when 

seedlings are in appropriate watering conditions, particularly cork oaks. Occurrence of 

decline is also associated with soil characteristics that interfere with root expansion and 

water retention. We assessed the relative importance of each factor involved in decline 

and revised the role of P. cinnamomi in cork and holm oak decline. 

 

 

3.2- AIM OF THE PAPER 

 

Although P. cinnamomi isolation was frequently recovered from declining sites 

in some studies (Brasier et al. 1993; Sánchez et al. 2002, 2003a; Romero et al. 2007), in 

other studies, pathogen detection was not so successful (Cobos et al. 1992; Robin et al. 

1998; Moreira and Martins 2005). Moreover, pathogenic tests with seedlings in 

controlled conditions indicated that P. cinnamomi is only a moderate pathogen of holm 
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and cork oak seedlings, especially concerning cork oaks (Robin et al. 1998; Moreira et 

al. 2000; Robin et al. 2001; Sánchez et al. 2005). It was suggested that tree mortality 

was occasioned after an interaction of pathogen attack with abiotic factors, with special 

relevance to drought events (e.g., Brasier et al. 1993; Robin et al. 1998; Gallego et al. 

1999).  

The aim of this review is to analyze the strength of the association between P. 

cinnamomi occurrence and cork and holm oak decline. To achieve this main objective, 

we examined all field surveys and pathogenicity tests that were published, as well as 

studies about the relation between cork and holm oak decline and other factors than P. 

cinnamomi. The specific goals were:  

1) To detect which factors are more associated with cork and holm oak decline,  

2) To analyze possible interactions between the pathogen and abiotic factors and  

3) To classify the role of P. cinnamomi in cork and holm oak mortality in South Europe. 

 

 

3.3 ANALYSIS OF THE BIBLIOGRAPHY 

 

3.3.1- Relationship between P. cinnamomi distribution and health status of cork 

and holm trees  

 

Several field surveys were carried out in order to study the relationship between 

P. cinnamomi and cork and holm oak decline (Cobos et al. 1992; Brasier et al. 1993; 
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Robin et al. 1998; Gallego et al. 1999; Moreira 2001; Sánchez et al. 2002), however, 

these prospections only focused on declining sites where tree mortality was occurring. 

Plant resistance to attack by Phytophthora spp. may depend on the physiologic status of 

the host (Duniway 1983); therefore, it is possible that in declining stands some other 

conditions were significantly predisposing trees to attack by pathogens. Tree death often 

represents an arbitrary point on a continuum process with multiple contributors where 

the proximate causes of death (e.g., an insect or disease) may be a secondary factor, 

whereas the primary one (e.g., starvation) may not be obvious (Franklin et al. 1987). For 

this reason, the presence of a pathogen in declining trees is not sufficient to indicate 

causality since it may be a consequence of alterations in host resistance due to other 

stress factors. For example, Biscogniauxia mediterranea, the causal agent of the 

charcoal disease, is closely associated with cork oak declining stands; however, it was 

recurrently recovered in both declining and asymptomatic cork oak trees in north 

Sardinia (Franceschini et al. 2002). These fungal populations are endophytic and remain 

latent in healthy tissues, developing upon decrease in host defenses caused by 

unfavorable conditions (Franceschini et al. 2002; Santos 2003). To analyze an 

association between a pathogen distribution and a disease incidence, surveys should be 

carried out in both declining and healthy sites. Few P. cinnamomi prospections on 

healthy montados have been published. In Portugal, an extensive survey covering 56 

healthy and declining montados, distributed throughout the country, showed a positive 

relation between the tree crown defoliation and the occurrence of P. cinnamomi in 

Algarve region, whereas no relationship was found in the other regions (Moreira 2001; 

Moreira and Martins 2005). This significant result was only possible after analyzing 

separately not only regions, but also the source of P. cinnamomi isolations: plant roots 

or soil rhizosphere of each selected tree. Thus, in Algarve region, trees with low 
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defoliation level showed a lower frequency of P. cinnamomi in roots and higher 

frequency of the pathogen in the rhizosphere than trees with high defoliation level. A 

similar trend was found in another study carried out in Cáceres region (Spain), where 

Vivas et al. (2009) found a positive relation between P. cinnamomi isolation from roots 

and crown decline symptoms of holm oak trees. However, this pattern is not 

consistently observed in cork oaks. In a survey carried out in Alentejo region (Portugal), 

the pathogen was recovered more often from root tissues of trees found in stands with 

average crown defoliation level lower than 25 % (Moreira et al. 2005); in this study, the 

pathogen was detected in almost all the montados surveyed, however, positive isolation 

from roots was infrequent in montados with higher crown defoliation. Possible 

explanations for this trend are described below. The study of relationship between P. 

cinnamomi detection and oak canopy status raises several questions concerning:  

(A) Pathogen isolation. 

(B) Time delay between infection and manifestation of above-ground symptoms. 

(C) Quantification of disease symptoms. 

(D) Use of different units in statistical analysis. 

(E) Host species (fig. 3.1). 

 

A) Pathogen isolation:  

 

Although negative results are usually attributed to low soil moisture at the time 

of the sample collection, Robin et al. (1998) and Sánchez et al. (2003a) observed that 

isolation success was not significantly correlated with soil moisture or rainfall, and 

positive isolations were obtained in soils with relative soil water content as low as 6 %. 

The environmental factor associated with isolations success was the minimum  
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Figure 3.1 Scheme of the critical steps on the studies concerning the relationship between 

Phytophthora cinnamomi distribution and health status of cork and holm trees 

 

 

temperature recorded in the 5-week preceding isolation attempts (Sánchez et al. 2003a). 

P. cinnamomi is a moderate temperature species and minimum temperature for growth 

is approximately 10ºC, with a few isolates being able to grow at 5ºC; free water is 

required for P. cinnamomi release of zoospores from sporangia and subsequent 

dispersal through the soil, however, water is not essential for production of 

chlamydospores and oospores, and for direct germination of the sporangia (Zentmyer 

1980). P. cinnamomi is able to grow and reproduce in slightly drier conditions than 

other Phytophthora spp. (Weste 1983). Negative results in pathogen isolation may be 

instead due to sub-optimized isolation methods. Usually a combination of baiting and 

selective medium is preferred; however, this procedure has several critical steps that 

should be adjusted, otherwise, isolation is just a matter of luck. For example, the 
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amount of soil analyzed for P. cinnamomi detection mentioned in almost all the studies 

referred in Table 3.1 is about 10 g per sample, whereas it should be taken about 3–5 soil 

monoliths (20 x 30 x 30 cm) for analysis to increase the probability of obtaining 

sufficient inoculum for bait infection (Jung et al. 2000; Jung 2011). Several other 

precautions are required in order to avoid Pythium spp. contamination, a faster growing 

oomycete that inhibits Phytophthora spp. isolations. On the other hand, isolation 

success is also related to the material source. Authors usually use soil samples from the 

rhizosphere and fine feeder roots for P. cinnamomi isolation attempts and, to a lesser 

extent, bark tissue. Positive isolations are more frequent when using soil samples 

instead of root samples, since roots infected primarily by Phytophthora spp. are latter 

invaded by other opportunistic pathogens (Jung 2011). However, the presence of the 

pathogen in the rhizosphere confirms that the pathogen is active but it does not present 

an unequivocal evidence of root infection. Some authors developed other methods than 

the combination of baiting and selective medium for P. cinnamomi detection from the 

soil or infected plants. ELISA based kits for Phytophthora spp. are not species specific 

and may show cross reactivity with some species of Pythium (O’brien et al. 2009), but 

new developed molecular techniques appear to be sensitive and species specific, thought 

it requires specialized equipment (Cooke et al. 2007; O’Brien et al. 2009; Williams et 

al. 2009; Langrell et al. 2011).  
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Table 3.1: Occurrence of Phytophthora cinnamomi in Quercus suber and Q. rotundifolia recovered by the baiting method and selective 

medium 

A) Q. suber, Q. rotundifolia 

Unit Date Region Health status 

criteria 

Sample 

type 

Total 

stands 

Total 

trees 

Healthy Units Declining Units Ref. 

      positive 

for Pc 

negative 

for Pc 

positive  

for Pc 

Negative  

 for Pc 
  

Tree 
Jun, Nov 95 

Jun 96 
SE France 

ACD of              

4 trees 

Roots, 

soil, bark 
24 96 

  
28 (29%) 68 (71%) G 

 
Sept. Au  

95-98 
C Portugal 

Crown 

defoliation 
Roots 20 65 0 (0%)

c
 

4 

(100%)
c
 

7 (11%)
d
 54 (89%)

d
 H 

 
Sept. Au.  

95-98 
C Portugal 

Crown 

defoliation 
Soil 20 65 0 (0%)

c
 

4 

(100%)
c
 

3 (5%)
d
 58 (95%)

d
 H 

 
Sept. Au.  

95-98 
S Portugal 

Crown 

defoliation 
Roots 30 192 

3 

(14%)
c
 

19 

(86%)
c
 

29 (17%)
d
 141 (83%)

d
 H 

 
Sept. Au.  

95-98 
S Portugal 

Crown 

defoliation 
Soil 30 192 

4 

(18%)
c
 

18 

(82%)
c
 

21 (12%)
d
 149 (88%)

d
 H 

Stand 
May, Nov 91 

March 92 

SW Spain, S 

Portugal 

Decline 

symptoms 
a
 

Roots, 

soil 
9 22   6 (67%) 3 (33%) B 

 
Jun, Nov 95 

Jun 96 
SE France 

ACD of              

4 trees 

Roots, 

soil, bark 
24 96   7 (29%) 17 (71%) G 

 Spring 00 SW Spain ACD in 4 ha Soil 8 196   6 (75%) 2 (25%) I 

 autumn 91 

 to spring 92 
W Spain 

Stands with 

mortality 

Roots, 

soil 
9 21   3 (33%) 6 (67%) D 

 spring 99  

to spring 00 
W Spain 

Stands with 

mortality 

Roots, 

soil 
6 

3 -5 per 

stand 
  4 (67%)  2 (33%) D 
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B) Q. rotundifolia 

Unit Date Region Health status 

criteria 

Sample 

type 

Total 

stands 

Total 

trees 

Healthy Units  Declining Units Ref. 

      positive 

for Pc 

negative 

for Pc 

positive for 

Pc 

Negative 

for Pc 
  

Tree 
Sept to      

Dec 91 
SW Spain 

Decline 

symptoms 
a
 

Roots, 

soil 
53 162   10 (6%) 152 (94%) 

A 

 
May, Nov 

91,March 92 
SW Spain,  

S Portugal 

Decline 

symptoms 
a
 

Roots, 

soil 
5 9    3 (33%)   6 (67%) B 

 Jan 98 SW Spain 
Crown  

defoliation 
Soil 3 28   20 (71%)   8 (29%) E 

 Jan 98 SW Spain 
Crown  

defoliation 
Roots  3 28   27 (96%)    1 (4%) E 

 Dec 99 W Spain 
Crown 

defoliation 
Soil 1 25   19 (76%)   6 (24%) F 

Stand 2003-2005 SW Iberia 
Declining 

stands
b
 

Roots, 

soil 
70 140   30 (43%) 40 (57%) C 

 
Sept to      

Dec 91 
SW Spain 

Stands with 

mortality 

Roots, 

soil 
53 162     9 (17%) 44 (83%) A 

 autumn 91 

 to spring 92 
W Spain 

Stands with 

mortality 

Roots, 

soil 
21 63      9 (43%) 12 (57%) D 

 spring 99  

to spring 00 
W Spain 

Stands with 

mortality 

Roots, 

soil 
17 

3 -5 

per 

stand 

     3 (18%) 14 (82%) D 
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A) Q. suber 

Unit Date Region Health status 

criteria 

Sample 

type 

Total 

stands 

Total 

trees 

Healthy Units  Declining Units Ref. 

      
positive 

for Pc 

negative 

for Pc 

positive 

for Pc 

Negative  

for Pc   

Tree 
Sept to      

Dec 91 
SW Spain 

Decline 

symptoms 
a
 

Roots, soil 30 78   20 (26%) 58 (74%) A 

 

May, Nov 91      

March 92 

SW Spain,    

S Portugal 

Decline 

symptoms 
a
 

Roots, soil 5 13   5 (38%)  8 (62%) B 

Stand 2003-2005 SW Iberia 
Declining 

stands
b
 

Roots, soil 31 62   19 (61%) 12 (39%) C 

 
Sept to      

Dec 91 
SW Spain 

Stands with 

mortality 
Roots, soil 30 78   14 (47%) 16 (53%) A 

 
spring 99  

to spring 00 
W Spain 

Stands with 

mortality 
Roots, soil 4 

3 -5 per 

stand 
   0 (0%) 4 (100%) D 

 

Pc: P. cinnamomi, ACD: Average crown defoliation, Sp: Spring, Au: Autumn; A: Cobos et al.  1992; B: Brasier et al. 1993; C: Romero et al.  2007; 

D: Molina et al. 2003; E: Sánchez et al. 2002; F: Molina et al. 2005; G: Robin et al. 1998; H: Moreira & Martins 2005; I: Sánchez et al. 2003a. 

 
a
 Crown defoliation, exudations, branch dieback 

 b
 Non-specified 

 
c
 trees with defoliation inferior to 10%  

 
d
 trees with defoliation superior to 10%
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B) Time delay between infection and above-ground symptoms: 

 

 Root pruning precedes crown dieback since a tree can tolerate a great loss of its 

rootlets or feeder roots without showing visible above-ground symptoms (Tsao 1990). 

Tests showed that sweet chestnut seedlings, a highly susceptible species to P. 

cinnamomi, tolerate a loss of 90 % of the rootlets before exhibiting alterations in water 

status as measured through plant hydraulic conductance and leaf water potential 

(Maurel et al. 2001a). This indicates that expression of above-ground symptoms might 

be a quantitative rather than a qualitative problem affecting the root system (Jung et al. 

1996). On the contrary, failure in detection of P. cinnamomi in the rhizosphere of 

declining plants is not unusual, because of the decrease in the fungal population due to 

antagonism and interference of fastgrowing- associated secondary microflora (Tsao 

1983).  

 

C) Quantification of disease symptoms:  

 

In studies concerning oak decline, some authors evaluate aboveground 

symptoms as a visual and subjective measure of the percentage of crown defoliation 

(e.g., Jung et al. 2000; Sánchez et al. 2002; Vettraino et al. 2002; Jönsson et al. 2003; 

Sánchez et al. 2003a; Moreira & Martins 2005). Although cork oaks are considered 

evergreen trees, they have short-lived foliage and a late flushing pattern; average leaf 

longevity is about 12 months whereas holm oak leaves last 1–3 years, and both leaf 

shedding and leaf birth occur during spring (Escudero et al. 1992; Sá et al. 2005; Caritat 

et al. 2006). Overlapping between different leaf cohorts is very low, and leaves should 
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be classified as overwinter, rather than true perennial (Mediavilla & Escudero 2008). 

Therefore, caution should be exercised while taking measurements of cork oak crown 

defoliation during spring. Moreover, cork oak has been described as an extremely 

polymorphous species with many overlapping morphological attributes, mainly 

distinguishable by certain traits of the leaves, fruits, and cupules (Natividade 1950; 

Coelho et al. 2006b). Thus, density of the canopy may be influenced by factors other 

than health status, like phenological variability, effect of tree competition (fig. 3.2) or 

artificial pruning. Some authors considered additional criteria to infer on the tree health 

status, like dieback of the tip of branches (e.g., Hansen & Delatour 1999; Balcì & 

Halmschlager 2003). Oak trees undergo self-pruning of lower branches under the shade, 

but dieback of high branches is a reliable symptom of stress. However, after the collapse 

of dead branches, trees may present enough vigor to be considered asymptomatic, 

rendering unreliable evaluation of their health status (Ribeiro 2006). Nevertheless, 

dieback or lower leaf density in the upper part of the canopy can be related with water 

stress.  

 

D) Use of different units in statistical analysis:  

 

In studies of the association between P. cinnamomi distribution and oak decline, 

researchers analyzed data at tree level or at stand level. Usually, at tree level, the 

independent factor is the presence of the pathogen in the tree rhizosphere and the 

dependent factor is the degree of the tree crown defoliation, whereas at stand level, a set 

of trees are analyzed; the stand is positive for the pathogen if at least one soil or root 

sample yields the pathogen and decline symptom is calculated as average tree crown 

defoliation of part or of all the trees from the set (Table 3.1). Analyses at tree level may  
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Figure 3.2: Asymptomatic trees with different canopy shape associated to intra-competition for light 

 A) with intra-competition; B) no competition 
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be hampered by eventual difficulties when isolating the pathogen or when evaluating 

disease symptoms, and by time delay between infection and aboveground symptoms, 

but at stand level one can use average values, thus avoiding great variation of data. 

Moreover, studies based on data obtained from nearby trees often display spatial 

autocorrelation, in that locations close to each other exhibit more similar values of 

independent factors than those further apart, increasing the chance of a type I error 

(incorrect rejection of a null hypothesis, Legendre 1993). On the other hand, analyses at 

stand level pose some subjectivity in relation to the methodology applied to select the 

area of the stand units and to calculate its health status, where different authors use their 

own criteria (Table 3.1). Tomé (2007) demonstrated that different criteria to infer the 

health status of the stands lead to different results and highlighted the importance in the 

implementation of standard and systematic methodology. In addition, stand units should 

be as homogeneous as possible, at least in relation to topographic characteristics that 

may influence P. cinnamomi distribution, like slope and orientation (Moreira and 

Martins 2005). Additionally, the absence of the pathogen in a stand should be based on 

more than two samples analyzed for P. cinnamomi detection; otherwise, the number of 

negative locations would be overestimated (Pryce et al. 2002).  

 

E) Host species:  

 

Several studies encompassed cork and holm oaks and both species are usually 

analyzed together (Brasier et al. 1993; Molina et al. 2003; Sánchez et al. 2003a; Moreira 

and Martins 2005). However, pathogenicity tests reveal that they exhibit differential 

susceptibility to P. cinnamomi, holm oak being more susceptible than cork oak (Maurel 
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et al. 2001b; Moreira 2001). Thus, pooling both species in the same analysis may lead 

to inaccurate results.  

 

Different methods for classifying the health status of the trees, the use of 

different units and problems in P. cinnamomi detection pose difficulties in evaluation 

studies. Declining stands positive for P. cinnamomi varied between 0 % (cork oak 

montados) and 61 % (cork oak montados; Table 3.1). At tree level, symptomatic trees 

positive for P. cinnamomi also showed great variation, from 6 to 96 % (both extreme 

values observed in holm oak montados). In two studies where both asymptomatic and 

symptomatic trees were surveyed, there was no strong relation between the presence of 

the pathogen and decline symptoms (Table 3.1), contrarily to other susceptible hosts 

like sweet chestnut (Vettraino et al. 2005) and Fraser fir (Abies fraseri; Griffin et al. 

2009) as well as with susceptible hosts to other Phytophthora spp. (Hansen 1999; Jung 

et al. 2000; Balcì and Halmschlager 2003; Jönsson et al. 2005) where the pathogens 

were frequently isolated from declining stands and/or trees and less frequently from 

healthy ones. For example, P. cinnamomi was isolated in 96 % of declining sweet 

chestnut stands and only in 21 % of asymptomatic ones (Vettraino et al. 2005). P. 

quercina was isolated in 63 % of declining pedunculate oak (Q. robur) and sessile oak 

(Q. petraea) trees and only 23 % in asymptomatic trees (Jung et al. 2000). This result 

was consistent, irrespective of the unity level, evaluation methods for health status 

estimation and inherent difficulties in Phytophthora isolations. In USA, little leaf 

disease in shortleaf pine (Pinus echinata) affects 1/3 of the stands; P. cinnamomi 

seemed to be associated with both healthy as well as affected stands; however, careful, 

quantitative surveys showed that not only declining stands were infected in higher 

number than healthy ones, but also declining trees were, on average, more infected than 
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nearby healthy trees in affected stands (Hansen 1999). Although P. cinnamomi has been 

isolated from declining cork and holm oak stands, its prospection in healthy stands 

using an adequate method is essential to evaluate the status of the stands or of the trees. 

At stand level, units should be uniform concerning topographic characteristics and an 

index of mortality relating dead (or highly damaged) trees with the total number of trees 

should be used to evaluate health status. At tree level, preference should be given not 

only to crown defoliation, but also to dieback of branch tips and spatial autocorrelation 

should be considered. 

 

 

3.3.2- Pathogenicity of P. cinnamomi in cork and holm oak seedlings 

 

Along with surveys in declining stands, experimental host inoculations with P. 

cinnamomi were carried out in nurseries under controlled conditions using 6 months up 

to 2 years old seedlings (Tuset et al. 1996; Robin et al. 1998, 2001; Gallego et al. 1999; 

Moreira et al. 2000; Maurel et al. 2001b; Sánchez et al. 2002; Tapias et al. 2008a). The 

most evident result from these studies is the finding in differential susceptibility 

between holm and cork oak seedlings to infection. In the studies where both cork and 

holm oak seedlings were tested, the latter always showed more symptoms and mortality 

rates than cork oak seedlings (Table 3.2). Although both species showed necrosis in tap 

roots and a reduction in root and in foliar biomass, symptoms were much more severe in 

holm oak seedlings except in the study conducted by Sánchez et al. (2002). Cork oak 

mortality was barely observed whereas holm oak mortality occurred in half of the 

studies and varied between 1 and 67 %. This result is in agreement with histological,  
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Table 3.2:  Morphologic and physiologic differences between Quercus suber and Q. rotundifolia 

seedlings inoculated with Phytophthora cinnamomi in relation to non-inoculated controls. Experiments 

were subjected to three different watering regimes. Each line refers to the effect of inoculation in 

relation to non-inoculated seedlings, according to the respective water regime 

Treat 

ment 

Duration 

(months) 

Dead 

plants 

Taproot  

necroses 

Foliar 

sympt 

Root 

 BM 

Foliar 

 BM 

Length gs  Fv/ 

Fm 

N,P K Reference 

Q. suber 

Flooding 1   =        Sánchez et al. 

2002  9 0          Moreira et al. 

2000  3 0 / 10          Romero et al. 

2007  4 2.5%          Tuset et al. 1996 

 5 3/74      < < 
d 

  Robin et al. 2001 

Watered
a 

9 0          Moreira et al. 

2000  6           Sánchez et al. 

2002  5   =        Sánchez et al. 

2005  5       = =   Robin et al. 2001 

 9 0 = (0)         Moreira et al. 

2000  5 0      < < 
d 

  Robin et al. 2001 
 

4 0/135      =    Tapias et al. 

2008a     2,5 0/25  
b
      =   Robin et al. 1998 

 2 1/ 3     
c
     Luque et al. 1999 

Drought 5 1/?      = =   Robin et al. 2001 
 

9 0   =       Moreira et al. 

2000  

Q. rotundifolia 

 

 

 
Flooding 1   =       

 Sánchez et al. 

2002  9 25%          Moreira et al. 

2000  4 64.3%          Tuset et al. 1996 

 5 67%          Robin et al. 2001 

Watered
a 

9 0          Moreira et al. 

2000 
 

6   =       

 Sánchez et al. 

2002  5          

 

Sánchez et al. 

2005  5       = =   Robin et al. 2001 

  10 1 

(10%) 

  < < < < =  <N,<P,=K Maurel et al. 

2001b  9 16.7%          Moreira et al. 

2000  5 20%   <   < <   Robin et al. 2001 

    2,5 25%  
b
      <   Robin et al. 1998 

Drought
 

9 0   =       Moreira et al. 

2000  10 1   < = = =   <N,<P,=K Maurel et al. 

2001b  5 6/32      = =   Robin et al. 2001 

F/D 8 8/18          Gallego et al. 

1999  

Seedlings were 6 months to 2 years old. All P. cinnamomi inoculations were applied in the substrate, 

except in Luque et al (1999) were the pathogen was applied in a wound made on the host. 

: Significantly more symptoms than controls,  

 : Significantly less symptoms than controls, 

 = No significant differences between control and inoculated plants; 

 Sympt: symptoms (wilting, yellowing, necrosis); BM: biomass; Length: Seedling length; gs: Stomatal 

conductance; : Predawn stem water potential; Fv/Fm: Photochemical efficiency; LHC: Hydraulic 

conductance; N P K: Leaf nitrogen, phosphorus and potassium; F/D: 
 
Alternating flooding and drought 

 a
 According to soil type and plant needs 

 
b
 non-specified symptoms 

 
c
 Diameter of the stem 

 
d
 There was no effect on  until 92 days after inoculation 
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studies showing that P. cinnamomi is able to invade vascular cylinder in newly emerged 

plants of both species, however, progress is more rapid and severe in the holm root 

cortical parenchyma than in cork oak (Moreira 2001; Pires et al. 2008). However, 

comparatively to other susceptible species, like the sweet chestnut, holm oaks exhibit 

more tolerance; in a comparative study, all the sweet chestnut seedlings died compared 

with 10 % of the holm oak seedlings (Maurel et al. 2001b). In most of the experiments 

with seedlings in appropriate watering conditions (usually field capacity), there was 

only slight or even no root or leaf symptoms (Moreira et al. 2000; Maurel et al. 2001b; 

Sánchez et al. 2002) and no physiological alterations related to transpiration and 

photosynthesis (Tapias et al. 2008a). Furthermore, inoculated seedlings even presented 

better performances than the controls in some experiments. For example, inoculated 

holm oaks plants had better water use efficiency (Maurel et al. 2001b) and cork oak 

plants had better hydraulic conductance and photochemical efficiency (Tapias et al. 

2008a) and showed higher root biomass than controls as a response to infection by P. 

cinnamomi (Moreira 2001). In relation to leaf water potential and stomatal conductance, 

results were contradictory; Tapias et al. (2008a) observed that the decrease in cork oak 

leaf water potential was not accompanied by changes in stomatal conductance, whereas 

Robin et al. (2001) and Maurel et al. (2001a, b) observed marked decrease in stomatal 

conductance of cork and holm oaks even at high values of water potential. Causality 

observed in these physiologic parameters may have different implications in the 

mechanism of infection. Decrease in stomatal conductance associated with leaf water 

potential is probably related to hydraulic signals acting in the stomata but decrease in 

stomatal conductance independent of leaf water potential may be related to non-

hydraulic signals like an increase in abscisic acid concentrations, associated with root 

pruning caused by P. cinnamomi infection (or drought), as it was found for the 
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susceptible sweet chestnut (Maurel et al. 2004). In relation to interaction between water 

regime and P. cinnamomi infection, it was observed that both waterlogging and water 

shortage altered the host symptomatology to infection. Waterlogging treatment resulted 

in more mortality, more necrosis and less root and foliar biomass for both cork and 

holm oaks compared to controls. A global data analysis shows a synergistic effect 

between excess water and infection by P. cinnamomi on the severity of the disease 

(Moreira et al. 2000; Robin et al. 2001; Sánchez et al. 2002), since waterlogging by 

itself did not cause major symptoms in the seedlings. Waterlogging caused some root 

necrosis (Moreira et al. 2000) and root weight losses (Robin et al. 2001), but 

waterlogging combined with P. cinnamomi increased disease symptoms exponentially 

and was related to major mortality. It is considered that waterlogging increases the 

severity of diseases caused by root pathogens, primarily by adversely affecting host 

physiology while increasing the mobility of the pathogen through the soil 

(Schoeneweiss 1975; Zentmyer 1980). The observed synergistic effect could be 

attributed to a strong increase in the pathogen population causing multiple infections on 

the host (Moreira et al. 2000; Robin et al. 2001; Sánchez et al. 2002) acting together 

with higher host susceptibility after root hypoxia caused by excess water (Jacobs et al. 

1996). This author observed that levels of defense barrier compounds (e.g., polymerized 

phenols) in cork oak roots changed at near-anoxic oxygen conditions. Contrasting to 

excess water, the effect of the pathogen was reduced in plants subjected to drought. In 

cork oaks subjected to water shortage, the pathogen did not affect root biomass (Moreira 

et al. 2000) and though holm oak root biomass decreased, infection did not alter root 

collar diameter and aerial biomass (Moreira et al. 2000; Maurel et al. 2001b). 

Inoculation of both cork and holm oaks subjected to water stress had no effect on 

stomatal conductance (Maurel et al. 2001b; Robin et al. 2001) and in leaf water 
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potential (Robin et al. 2001), except in one study where inoculated holm oaks had leaf 

water potential values as well as plants in good watering conditions (Maurel et al. 

2001b). This may happen if stomatal closure following root infection reduces water 

losses. In relation to midday stem water potential, decreases were only related to water 

shortage and not to inoculation (Turco et al. 2004). Water stress also limited necrosis 

length caused by the pathogen when comparing to necrosis length in cork oaks plants 

subjected to good watering conditions (Luque et al. 2000). When subjected to water 

shortage, inoculated plants may not suffer from water stress since they already reduced 

water absorption and water losses as a consequence of P. cinnamomi infection (Maurel 

et al. 2001b). Physiological responses to infection like stomatal closure, better water use 

and photochemical efficiency, observed in plants infected by P. cinnamomi in good 

watering regimes, may enable trees to tolerate some water stress, at least temporarily. 

However, when irrigation is reduced long enough to significantly decrease soil 

moisture, there is an indication that the combination of water stress and infection 

increases severity symptoms (Moreira et al. 2006). Long-term experiments under water 

shortage are necessary to understand the relationship between drought and infection. 

Other studies, concerning germination and survival of newly emerged plants, showed 

high damping-off in artificially inoculated soils, with holm oaks being more affected; 

damping-off in naturally inoculated soils was very low and eventually attributed to low 

inoculum values or to the presence of antagonistic factors (Tapias et al. 2006, 2008b; 

Moreira 2001). On the contrary, other experiment showed high holm oak damping-off 

in naturally inoculated soils; however, part of the samples were subjected to alternation 

of flooding and drought conditions (Gallego et al. 1999) which may affect plant 

tolerance and pathogen aggressiveness. In relation to open field experiments in soils 

naturally infested with P. cinnamomi, damping-off occurred in 12.3 % of the 
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germinated cork oak seedlings (Moreira et al. 2007) and in 19.6 % of the planted holm 

oak seedlings after the first year of experiment (Molina et al. 2005); however, authors 

considered that not all mortalities could be ascribed to the pathogen. Finally, studies 

regarding selection of more resistant seedlings detected some differential 

resistance/tolerance to P. cinnamomi infection among new emerging cork and holm oak 

seedlings from different origins (Moreira et al. 2007; Tapias et al. 2008b). The 

possibility of using plants more tolerant or resistant to P. cinnamomi infection can be an 

important tool to the reforestation of highly infested areas (Moreira et al. 2007); 

however, older seedlings from diverse origins had similar physiologic responses to 

infection (Tapias et al. 2008a). In general, authors considered reactions shown by 

inoculated oaks very similar to the response usually observed in trees subjected to 

drought. Both pathogen infection and water stress may reduce root biomass and leaf 

water potential. Although in some circumstances, major roots and the lower stem may 

be infected (Shea et al. 1982; Dawson and Weste 1984), it is considered that the main 

effect of P. cinnamomi is the destruction of fine roots; therefore, reducing water 

absorption capacity and causing water stress symptoms. Exceptions were found on 

silvertop ash (Eucalyptus sieberi), a susceptible host that suffers from water stress when 

only about 1/6 of the roots are infected; thus failure in water transport cannot be due 

directly to decay of the root system (Dawson & Weste 1984). Likewise, in jarrah (E. 

marginata), there was a reduction in cytokinins before significant reduction in root tips 

(Cahill et al. 1986). The authors suggested that changes in the balance between this 

phyto-hormone and abscisic acid could cause water transport failure and symptoms of 

drought. In holm and cork oak trees, there are no studies concerning hormonal changes 

after infection, but there are indications that the water absorption deficit is related to 

root pruning (Robin et al. 2001). P. cinnamomi invades holm oaks roots more rapidly 
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than cork oak ones, but penetration and intra- and intercellular progression of the 

pathogen through the cortical parenchyma and vascular cylinder are similar in both 

species (Pires et al. 2008). Both species respond with accumulation of phenolic 

compounds close to the hypha, which are not able to prevent root invasion (Pires et al. 

2008). However, histological examinations of other resistant species showed that their 

root tissues were also invaded by the pathogen; nevertheless, those species were able to 

restrict colonization and necrosis (Cahill et al. 1989; Jang & Tainter 1990). The authors 

observed deposition of phenolic compounds in infected roots, as well as granulation of 

the cytoplasm, shrinkage of the protoplast and cell-wall distortion and disruption, 

regardless the species was considered resistant or susceptible. No specific change has 

been consistently associated with resistance, though deposition of phenolic compounds, 

lignification of cell walls and formation of papillae are observed more often in resistant 

ones (Cahill et al. 1989; Cahill & Weste 1983; Cahill et al. 1993). For example, resistant 

sweet chestnut hybrids increase production of leaf phenolic compounds after infection, 

whereas in the susceptible sweet chestnut no difference in leaf phenol content was 

observed (Dinis et al. 2011). Numerous plant species considered resistant to P. 

cinnamomi exhibit horizontal resistance, opposed to vertical resistance where disease 

does not occur (Erwin and Ribeiro 1996; Irwin et al. 1995). There are no reports of 

species being able to block pathogen ingress. It is thought that field-resistant plants are 

able to restrict colonization, sealing the lesions off by the periderm and shedding them 

(Tippett et al. 1985; Irwin et al. 1995; Cahill et al. 2008). When an infected plant can 

prevent further spread of the pathogen determines the severity of infection (Cahill et al. 

2008). In conclusion, the pathogenicity tests indicate that holm and cork oak seedlings 

present some susceptibility to P. cinnamomi infection, particularly in conditions of 

excess water, with holm oaks being more susceptible. Both cork and holm oaks have 



 

41 
 

limited capacity in preventing P. cinnamomi progression, particularly in new root 

tissues, but in appropriate watering and nutritional conditions, infected cork oak 

seedlings may replace necrotic roots (Moreira 2001), thus avoiding water stress caused 

by the reduction in water absorption following root destruction. 

 

 

3.3.3- Relationship between cork and holm oak mortality and site characteristics 

 

Cork oak mortality events have been usually empirically ascribed to complexes 

involving abiotic stress factors related to soil properties, particularly hydromorphic and 

shallow soils, and drought, inadequate silvicultural practices and secondary attacks by 

insects and fungi (Natividade 1958; Cabral et al. 1992; Diniz 1994). Studies attempting 

to statistically relate abiotic factors and mortality are shown in Table 3.3. Results varied 

from region to region. Since trees are subjected to several local abiotic factors that 

interact between them, the relative effect of each one depends on that of the others. 

Thus, a negative effect in one region may be positive or neutral in another. For example, 

the presence of understory is associated with increase in mortality of cork oak trees in 

SW Portugal (Costa et al. 2010), but in Sardinia, unshrubed stands do not affect trees 

vitality (Ruiu et al. 2005a). Diniz (1994) and Cabral et al. (1992) observed that the 

shrub gum rockrose (Cistus ladanifer), present in some severely affected areas, may 

compete for limiting water sources in shallow and sun-exposed soils. In areas with no 

water limitations or with other shrub species, competition may be absent. Moreover, 

shrub clearing may alter soil properties, exposing them to sunlight, temperature 

oscillations, erosion and lixiviation, which may increase tree mortality (Macara 1975).  
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Table 3.3: Abiotic factors associated with cork oaks (Quercus suber) and holm oaks (Q. rotundifolia) decline.  

    Abiotic factors  

    Stand  Soil  

Species Scale Region Health status 
criteria 

Tree 
age 

Cultural  
practices 

Struture Orien 
tation 

 Texture 
or type 

Depth Topo 
graphy 

OM P N K2O Perm SC Reference 

Q. suber                   

 Tree N Portugal Crown defoliation -       
Declive 

(-) 
+ -    + 

Martins 
et al 2006 

  S Portugal Crown defoliation         + -  -  + 
Martins 

et al 2006 

  C Portugal Dead/ alive +
b
  NS

d 
NS   - 

Slope: 
NS 

      Ribeiro 2006 

 Stand SW Portugal 
% defoliation 
 

     
Clay (+) 
Silt (-) 

-   - - -   
Bernardo 
et al 1992 

  
Sardinia 
Italy 

Average 
defoliation 

NS 
Pasture  
Shrub clearing 

 

NS
d
 NS  NS

i 
      NS  Ruiu et al 2005a 

  Portugal 
% of dead 
Trees 

      - 
Usually 
in plains 

      
Ribeiro & Surový 

2007 

  SW Portugal 
5 dead  trees 
/ ha 

  
Shrub. 

Agrosil. 
Wood.

e
 

South 
(+) 

 
Leptosols  

Luvisols  
Arenosol 

-        Costa et al 2010 

Q. rotundifolia 

 Tree W Spain Crown defoliation      Gravel  
Sand =Clay  

 Silt 

      

+ - 

Solla 
et al 2009 

  W Spain 30% wilted      Clay NS  
Sand NS 

    -   + Vivas et al 
2009

g
 

  W Spain Symptomatic: 
30% wilted 

     Clay Sand     =   + Vivas et al 
2009

h
 

 Stand Sardinia 
Italy 

Average 
defoliation  

NS NS
c
 NS

d
 NS  NS

f 
      NS  Ruiu et al 2005b 

Q.suber Q. rotundifolia
 

 
Stand W Spain Symptomatic 

trees
a 

- Cork harvest > 
Pruning > 
No activity = 
Harrowing= 
Shrub clearing 

   Schist   

Rock  
Clay= Sand  

 Valleys 

Slopes  
Plains  

      Perez 1993
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OM: Organic matter; K2O: Potassium oxide; P: Phosphorus; N: Nitrogen; Perm: Permeability; CEC: Cation exchange capacity; SC: Soil compaction; C Port: Center Portugal; (+) 

Positively related with mortality; (-) Negatively related with mortality; NS: Non-significant; : Category more associated to decline than the next one; =: Both categories equally 

associated to decline; 

a
 Symptoms non specified 

b
 Related to tree size 

c
 Pasture, shrub clearing 

d
 Density 

e
 Shrubland, agro-silvo-pastoral system, woodland 

f
 Substrates: basalt, trachyte, granite, schist, sedimentary 

g
  Analysis made in trees located in slopes 

h 
Analysis made in trees located in streams 
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As a consequence, the effect of the understory in tree vitality depends on plant species 

that are involved and on water availability, which, in turn, may depend on other stand 

characteristics like orientation or topography. Additionally the effect of shrub clearing 

in tree vitality depends also on the method applied. Shrub removal with soil 

mobilization causes disturbance in the root system of the trees and may increase tree 

vulnerability to adverse conditions. Concerning orientation, it was reported higher 

mortality values in south facing slopes (Costa et al. 2010; Moreira & Martins 2005; 

Brasier 1996; Cabral et al. 1992) but in some studies this pattern was not observed 

(Table 3.3). It is expected that plants growing in south facing slopes are more subjected 

to drought conditions, though in some regions the absolute humidity values may not be 

low enough to be reflected in tree vitality and no significant pattern is observed.  

Although the relationship between site characteristics and tree decline varied 

among studies (Table 3.3), we estimated the relative significance of each independent 

factor in tree decline as the proportion of the number of studies where the factor was 

significant in relation to all the studies where it was analyzed; we also included the 

relative significance of P. cinnamomi in tree decline, calculated as number of declining 

stands positive for the pathogen in relation to the total of declining stands (fig. 3.3). 

Since there are mixed cork and holm oak stands and little information concerning 

separate species, we analyzed both species together. Cork and holm oaks are moderate 

susceptible to P. cinnamomi and are also affected by the same abiotic factors. Although 

the strength of association between each factor and the health status of the trees may 

vary between species, for a general screening, we opt to group both species. It is 

possible to observe in fig. 3.3 that soil compaction and depth were the characteristics 

most associated with decline, whereas P. cinnamomi was detected in 40 % of declining 

stand; however, the presence of the pathogen is probably underestimated, since false  
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Figure 3.3 Relative significance of each independent factor associated with cork (Quercus 

suber) and holm oak(Q. rotundifolia) decline in the studies referred in Tables 3.1 and 3.3 

 

 

negatives are common when using the baiting method for Phytophthora spp. detection 

(O’Brien et al. 2009). Factors limiting vertical root expansion such as compact or 

shallow soils may limit root access to deep groundwater tables during the dry season 

(Otieno et al. 2006) and, on the other hand, expose the roots to disturbances caused by 

soil management, waterlogging events and root pathogens. As a consequence, weakened 

and predisposed trees may not be able to regenerate the reduced fine-root capacities and 

will suffer extreme drought stress during the dry season and/or after drought episodes, 

as it was observed in beech and in silvertop ash decline (Cahill et al. 2008; Jung 2009). 
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Reduced soil compaction associated with high percentage of gravel increases soil 

infiltration capacities favoring holm oaks decline caused by water stress (Solla et al. 

2009). Other factors like orientation, topography, soil texture or understory are usually 

associated with mortality and all affect water availability, either limiting or in excess. 

Shrub competition, south orientation or soils with high gravel content may reduce water 

availability to values below the appropriate range, thus imposing drought conditions to 

the trees. On the other hand, topographic depressions, soils with high clay content and 

shallow soils have poor drainage, contributing with excess water to root hypoxia, 

toxicity and tree decline (Bernardo et al. 1992; Natividade 1958; Cabral et al. 1992; 

Diniz 1994). Nutrient availability was also related to tree decline, though cork and holm 

oaks are adapted to nutrient-poor soils. Bernardo et al. (1992) observed that soils with 

deficient internal drainage and with low effective thickness for root expansion have less 

accessible nutrients. Cork oak trees growing on these stands showed less vitality and 

their leaves exhibit nutrient imbalanced concentrations. Tests carried out in sandy and 

schistose soils during four sequential years showed an overall cork oak vitality recovery 

after fertilization treatments, however, the response was only observed during the first 

year after the first fertilization (Sousa et al. 2005). Site characteristics may act directly 

in the health status of the trees but also they affect P. cinnamomi survival acting in 

synergy with the pathogen. In particular, factors influencing soil moisture levels and 

microbial populations are factors governing the growth, reproduction and inoculum 

potential of the pathogen (Weste and Marks 1987). Soil compaction was reported to 

yield more P. cinnamomi inoculum (Vivas et al. 2009), though this relation may interact 

with water condition (Rhoades et al. 2003). Nevertheless, mortality associated with P. 

cinnamomi is usually much more severe in compact or shallow soils (Weste & Marks 

1987; Fonseca et al. 2004). South-oriented stands and soils with high percentage of clay 
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are both favorable to P. cinnamomi survival (Moreira & Martins 2005; Vivas et al. 

2009) and unfavorable to cork oak vitality.  

Pathogenicity test (Table 3.2) indicated a synergism between waterlogging 

conditions and infection by P. cinnamomi and these results should be considered in the 

studies concerning mortality in the open field. Soils retaining high levels of moisture 

provide conditions to the increase in P. cinnamomi inoculum causing multiple fine root 

infections and, in addition, negatively affect cork and holm oak roots and the overall 

health status of the trees. Although pathogen preferences for high levels of moisture, it 

was preferentially recovered in the driest side of the hills (Moreira & Martins 2005). 

This pattern was also found in Australia, and it was suggested that those soils may also 

have a low level of microbial antagonism (Newhook & Podger 1972). Soil dryness 

inactivates most of the suppressive microorganisms before affecting P. cinnamomi 

(Weste & Marks 1987), which may explain the preferential occurrence of the pathogen 

in south facing slopes. Furthermore, the occurrence of susceptible species like the shrub 

Cistus ladanifer in sunlight exposed slopes can provide an important basis for inoculum 

production and survival, thus acting as reservoirs for P. cinnamomi (Moreira 2001). 

Regardless of sites with south orientation yielding high amount of P. cinnamomi, the 

relation between drought and infection by root pathogens in tree decline in those sites is 

unclear, given that pathogenicity tests showed that the symptoms of the infection are 

limited when plants are also subjected to moderate water stress (Table 3.2). Supporting 

this assumption is the result obtained in a montado at Extremadura, Spain, where trunk 

injections with potassium phosphonate, which have been used successfully to control P. 

cinnamomi, had no effects on holm oaks shoot growth and acorn production (Solla et al. 

2009). In this study, water stress was more likely to contribute to decline than P. 

cinnamomi. Drought has been considered a factor associated with mortality (Macara 
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1975; Cabral et al. 1992). In Spain, there was synchronism between exceptionally dry 

years and holm oak mortality (LLoret a&nd Siscart 1995; Peñuelas et al. 2001; Sánchez 

& Garcia 2007) and recovery occurred after long periods of rain (Tuset & Sánchez 

2004). Cabral & Lopes (1992) also refer to a synchrony between atypical dry years 

(1943–1945, 1975–1976, 1980–1993) in Portugal and cork oak mortality events referred 

in bibliography; however, this pattern was not found in the study of Pereira (2007), 

which was also carried out in Portugal, though with no information concerning the 

period analyzed. On the contrary, in the southern regions of Portugal, there was a 

positive relationship between higher mortality and average annual precipitation (Ribeiro 

& Surový 2007). The exception was found in the driest region, where lower values of 

precipitation presented more mortality values. These patterns might suggest that usually 

holm oaks are more susceptible to drought events and cork oaks to excess water. 

 

 

3.3.4 Approaches to prevent decline 

 

Development of infection is usually explained with a disease triangle, a general 

concept in plant pathology. The three main factors that must operate in concert to 

produce the disease are the presence of the pathogen, a susceptible plant host and 

environmental conditions favoring infection. Methods of disease control can be thought 

of as modifying the disease triangle by reducing or eliminating one of the three factors. 

Researchers have been trying to reduce host susceptibility through selection of resistant 

varieties to P. cinnamomi with promising results (Moreira et al. 2006, 2007) and studies 

about the mechanism of pathogenesis of P. cinnamomi on cork oak have been carried 
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out with potential implications for disease control via resistance breeding (Coelho et al. 

2006a; Horta et al. 2008; Maia et al. 2008). The initial approach to reduce the presence 

of the pathogen in the field was through application of the fungicide Metalaxyl (Coffey 

et al. 1984), however, some resistance has been found in some Phytophthora spp. 

(Cohen & Coffey 1986) and prolonged use of Metalaxyl reduces its efficacy (Darvas & 

Becker 1984). The fungicide may slow P. cinnamomi tissue infection but it does not 

eliminate the pathogen from infected plants (Marks & Smith 1992). Potassium 

phosphonate is other fungicide believed to have fungistatic activity and to stimulate the 

defense mechanisms of the fine roots (Guest & Grant 1991). Its application successfully 

improved vegetative growth of cork and holm oak seedlings in controlled situations 

(Navarro et al. 2004) as well as in adult holm oak trees in open field (Fernández-

Escobar et al. 1999); however, other studies on treated trees have reported a lack of 

effectiveness of the fungicide (Porras et al. 2007; Solla et al. 2009). In order to suppress 

the pathogen, greenhouse experiments have been successfully realized with extracts 

from native plants (Neves et al. 2007), vegetable composts (Moreira et al. 2010) and 

calcium fertilizers (Serrano et al. 2011). The latter are not indicated to cork oak due to 

its preference for soils free of calcium carbonate. These experiments were conducted 

with seedlings in controlled situations and for the moment there are no curative 

treatments that can be carried out in adult trees, despite potassium phosphonate 

applications. Finally, restriction of human access to undisturbed sites is recommended 

to prevent further dispersal of the pathogen (Dawson & Weste 1985); however, these 

guidelines are not feasible to these human-made agro-silvo-pastoral systems. Other 

approach to reduce pathogen dispersal is through the control of nursery stocks used to 

reforestation, since there is strong evidence that Phytophthora dispersal and infested 

nursery stock are linked (Brasier & Jung 2003). Approaches described above present 
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some limitations: selection of resistant hosts is a long-term run since it will take time to 

replace susceptible with resistant varieties or to improve resistance through genetic 

manipulation. P. cinnamomi suppression through products application would be 

demanding since the species is widespread in the Mediterranean region and will 

probably widen its distributions with the expected climatic alterations (Brasier & Scott 

1994; Brasier 1996). Data from Tables 1, 2 and 3 indicated that cork and holm oaks 

appear to be moderately susceptible to P. cinnamomi infection. For this reason, and 

considering disease triangle, the occurrence of infection is strongly dependent on 

environmental characteristics that not only favors pathogen survival, but also reduce 

host resistance. Figure 3.3 shows that cultural practices were one of the factors 

associated with decline. Moreover, management practices affect soil properties in its 

chemical, biotic and physical characteristics (Vacca 2000; Soru et al. 2006; Moreno and 

Obrador 2007; Moreno et al. 2007; Azul et al. 2011; Schnabel et al. 2011), including 

alterations in soil compaction and effective depth. A recovery from decline after long 

periods of rain was referred in some holm oak stands when management practices that 

cause root damage, soil degradation, and lack of natural regeneration were minimized 

(Tuset & Sánchez in 2004; Solla et al. 2009). Diniz (1994) also point out that soil 

management could increase decline in stands sub-optimal for cork oaks vitality, thus 

cultural practices should be adapted to site characteristics. Stand management offers 

several possibilities in the control and prevention of cork and holm oak decline, since it 

interferes with several other site characteristics associated with host vitality and 

pathogen survival and is one of the factors associated with decline that we effectively 

control.  
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3.4 CONCLUSION 

 

Forest declines are considered a complex multifactorial phenomenon involving 

the combination of several factors. It is challenging to identify a cause that overcomes 

others, either because it may be related to other factors or because the proximate cause 

of death may mask the primary one. Following Manion’s (1981) disease spiral concept, 

P. cinnamomi appears to act as a predisposing stress factor that, combined with other 

predisposing factors such as soil compaction, shallow soils, reduces cork and holm oak 

trees resilience, thus increasing their susceptibility to inciting and contributing stress 

factors, like drought or excess water events and other diseases (fig. 3.4). The effect of P. 

cinnamomi appears to be a chronic root pruning, more severe in holm than in cork oaks, 

forcing the trees to expend more energy in the production of more fine roots. To 

succeed, trees should be located in soils favoring root expansion and with adequate 

nutrient and hydric conditions. Otherwise, trees may not be able to replace necrotic 

roots and, moreover, the use of limited resources for the defense system and for root 

reposition may limit their response to other adverse situations. The main difference 

between cork and holm oaks and highly susceptible species is probably a higher 

dependence of other unfavorable conditions to occur decline. Despite this, the role of P. 

cinnamomi in oak decline should not be ignored. 
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Figure 3.4 Adaptation of Manion’s (1981) disease spiral with main interacting factors 

associated with cork and holm oak decline classified according to their role in decline 
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CHAPTER 4 

 

 

 

Testing methods 

for field diagnosis of Phytophthora cinnamomi: 

Baiting selective-medium vs. Nested PCR 
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4.1- ABSTRACT 

 

Baiting selective-medium methods are routinely used for P. cinnamomi 

diagnosis from soil samples, but they present some limitations resulting in the 

production of false negatives. On the other hand, DNA-based molecular protocols were 

recently developed to diagnose P. cinnamomi from soil samples. In this study, it was 

tested three variations of the baiting selective-medium method and a nested-PCR 

protocol for P. cinnamomi detection from soil samples collected in the rhizosphere of  

up to 60 declining and non-declining cork trees distributed in 30 stands. The objective 

was to analyze P. cinnamomi distribution in the study area and its association with tree 

health status using a reliable P. cinnamomi diagnosis. The main obstacle in the recovery 

of the pathogen using baiting selective-medium methods was pronounced contamination 

by Pythium spp. However, there are several improvements that were be applied to 

reduce contamination, namely the use of intact leaves for baiting, maintaining them 

floating at a distance of 3-4cm from the soil surface, the use of small parts of the 

infected tissue when plating in selective-medium and frequent observation for posterior 

sub-culturing of the growing hyphae. Overall success rate was 10.1%. Nested-PCR 

methods failed in detecting P. cinnamomi on 56 of the 60 soil samples (6.7%). 3 of the 

positive results were obtained from soils already positive for P. cinnamomi through 

baiting selective-medium method. Several attempts to optimize the reaction were tested, 

but reactions using soil DNA with aliquots of P. cinnamomi DNA showed amplification 

of the target DNA, indicating that PCR conditions were optimized and no inhibitors 

were present. It was applied other method for DNA extraction that allowed the use of 4-

fold more soil sample. Purified DNA extracted with CTAB method resulted in similar 

DNA concentration despite the use of more soil sample. These results suggested that 



 

55 
 

failure in detecting the pathogen was due to small amount of soils samples, reducing the 

probability of acquiring sufficient P. cinnamomi inoculum. An alternative would be the 

use of combined techniques, applying selective-medium for pathogen isolation and 

molecular methods for identification. P. cinnamomi was detected in stands with high 

mortality rate, but also in stands with no mortality and with tree regeneration. 

 

 

4.2- INTRODUCTION  

 

Routine methods for detection of P. cinnamomi usually consist on baiting selective-

medium procedures and involve two stages, isolation and identification: generally the 

isolation stage is also separated in two procedures: the first is the baiting stage where 

the goal is to attract zoospores to a trap; in the second stage the infected trap is placed 

on a selective medium for mycelium growth. Although the use of traps increases the 

probability of positive isolation, some researchers opt to apply directly the soil sample 

(diluted in water) onto the selective medium in order to quantify the active inoculum, or 

to plate directly infected roots with the aim to assure that the inoculum is active on the 

host tissues. There are several selective and susceptible traps used to “fish” P. 

cinnamomi, which can be part of plants (leaves, fruits) or whole seedlings and are 

chosen according to their availability. An extensive description of the vegetal traps and 

their efficacy was reported by Zentmeyer (1980). After verification of infection, 

isolation of the pathogen should be performed by plating out diseased tissues on 

selective media with antibiotics and fungicides to prevent growth of contaminant 

bacteria or fungi. The use of selective media prevents the masking or inhibition of the 
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relatively slow growing Phytophthora by the tremendous range of other 

microorganisms (Cooke et al. 2007). The mycelium developing in the selective medium 

can be finally identified. In the identification stage, plating out P. cinnamomi onto PDA 

(potato dextrose agar) medium should result in a characteristic gross morphology, or 

phenotype, with a camellioid or rosaceous growth pattern (Zentmeyer 1980). However, 

there are some variants in the shapes that are formed by the colony and, moreover, other 

Phytophthora spp. may form rosaceous colonies (Erwin & Ribeiro 1996), therefore, 

posterior identification of the species based on their structures like hyphae, sporangia 

and chlamydospores should be attempted. Although plating out in PDA medium the 

mycelium growing in the selective medium is useful to select Phytophthora instead of 

Pythium spp. or fungi mycelium, other procedures should be realized to identify P. 

cinnamomi since it does not form spores neither their characteristics hyphal swellings in 

this medium. Sporangium production can be stimulated by non-sterile soil extract 

(Jeffers & Aldwinckle 1987) and chlamydospores are abundantly produced in carrot or 

V8 agar medium. Oospores formation can be, by turn, stimulated by the presence of 

other Phytophthora spp. (Zentmeyer 1980). Microscopic observations of the spores are 

a good procedure for species identification, but it is time consuming, requires expertize 

and are not above misidentifications. Thus, molecular analyses are probably the most 

accurate method to identify the species the mycelium formed in PDA medium belong 

to, despite being more cost consuming than morphologic identification. Polymerase 

Chain Reaction (PCR) -based approaches have recently been developed and their 

application in the study of Phytophthoras in natural ecosystems is opening an incredible 

number of research opportunities (Cooke et al. 2007). PCR assays developed for P. 

cinnamomi identification usually target on pure cultures, soilless medium, or plant 

tissues (ex: Dobrowolski & O'Brien 1993, Coelho et al. 1997, Kong et al. 2003), but 
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two for them were specifically designed for P. cinnamomi detection from soil samples 

(William et al. 2009; Langrell at al. 2011). William et al. (2009) developed a protocol to 

detect P. cinnamomi inoculum from soil samples through a nested-PCR where both pair 

of primers were designed specifically for P. cinnamomi based on Internal Transcribed 

Spacer (ITS) region. Langrell at al. (2011) developed a touchdown nested multiplex 

PCR protocol for the simultaneous detection of P. cinnamomi and P. cambivora direct 

from soil with pre-existing and novel primers, based on ITS region as well.  

An accurate detection of the root pathogen is crucial in studies concerning tree 

decline. Visible symptoms of oak decline observed in the field are unspecific and refers 

to defoliation and upper branch dieback or, occasionally, fast drying of the leaves (see 

chapter 2 for an exhaustive description of decline symptoms). These symptoms were 

associated to different tree physiologic response to water stress, as it was studied and 

explained in detail in chapter 5. However, only after accessing the origin of tree water 

impairment it will be possible to develop approaches for an eventual prevention of the 

problem. Infection of fine roots by root pathogens, destruction of shallow roots during 

management practices with soil tillage in the rizosphere, flooded soils enhancing root 

hypoxia and rot, or limited access to deep water resources may cause the same 

symptoms. In cork and holm oak montados, P. cinnamomi diagnosis was only realized 

through traditional baiting-selective medium methods. Its success rate varied 

considerably among studies (see chapter 2) and unsuccessful attempts may or not be 

real negatives isolations. Therefore, studies about cork and holm oak decline, including 

studies on the interaction between the pathogen distribution and abiotic factors, or 

studies about the physiologic status of host trees with P. cinnamomi in the rhizosphere, 

the effect of ectomycorrhizae in preventing P. cinnamomi infection in the field, or 
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approaches to prevent host mortality, all need a reliable method for P. cinnamomi 

diagnosis.  

 

 

4.3- OBJECTIVES 

 

In this study we tested the efficacy of traditional methods vs PCR-based methods for P. 

cinnamomi diagnosis from soils samples obtained in a cork oak montado. The goal of 

this study was to analyze the distribution of P. cinnamomi in montado woodland 

showing variable mortality indexes with a reliable methodology. 

 

 

4.4- MATERIAL AND METHODS 

 

4.4.1- Study site 

 

Since 1995 a set of 64 permanent plots with were installed in montados at 

Machuqueira do Grou (39°6'N 8°22'W, 130–150 m a.s.l.), near Coruche, Portugal (16 

°C mean annual air temperature, 640 mm mean annual precipitation) in the Alentejo 

region, on undulating terrain, with the assistance of forest producers associations. In the 

permanent plots cork oaks have been monitored in regards to tree growth and density 

(mortality and tree replacement) and cork production (Ribeiro et al. 2003) which was 
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linked with information regarding site characteristics, stand structure, human 

management and meteorology. This approach has allowed long term studies with a 

detail and complexity that otherwise would be difficult to achieve. With information 

obtained in the permanent plots it was produced special tree growth models and 

mortality models (CORKFITS, Ribeiro et al. 2004, 2006) and a decision support system 

(ECCORK, Pinheiro et al. 2008), both being useful tools to help forest producers in 

their management practices decisions. Mortality of each stands was calculated as a 

percentage of tree mortality in relation to total trees (Ribeiro 2006). 

 

 

4.4.2 - Soil sample collection 

 

Soil samples were collected during four field surveys, 19 stands in spring 2010, 16 

stands in autumn 2010, 31 stands in spring 2011, and 4 stands in autumn 2011, after 

seasonal rains when soil inoculum of P. cinnamomi is supposed to increase due to water 

availability and, additionally, occurs the sprout of young cork oak leaves, necessary for 

baiting. In the 4
th

 survey, efforts were concentrated in a study-case for ecophysiologic 

measurements and only 6 trees were needed for sampling (chapter 5). In the surveys, 

two widely separated trees per stand with some decline symptoms, namely the presence 

of upper branch dieback, were selected for soil sampling (fig. 4.1). Careful was taken 

not to select much damaged trees (Jung 2011). In the case of no dieback symptoms, 

trees were selected randomly. In the 4
th

 survey it was selected 12 trees in the 4 stands 

with half presenting decline symptoms, as explained in chapter 5. After removing the  
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Figure 4.1: Cork oak (Quercus suber) with decline symptoms like upper branch dieback 
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first layer of soil litter, soil samples were collected in four locations distant 1m from the 

trunk base of each tree, and about 10 cm deep, making a total of 0.5 L. Utensils used to 

excavate and collect soil samples were disinfected with alcohol 70% before use in 

another tree. 

Soil samples were homogenized and stored at 10ºC for up to four weeks until 

utilization. Storage at low temperatures stimulates zoospores release from sporangium 

(Zentmeyer 1980). A 50 ml sample of each soil was freeze dried for two days and stored 

at -20ºC for posterior molecular analyses.  

 

 

4.4.3 - Baiting and selective-medium methodology 

 

It was tested three different baiting methodologies, where the proportion of 

infected baiting leaves and the proportion of contamination in selective-medium was 

measured. Success rate was calculated as the proportion of soils (1 composite sample by 

tree) positive for P. cinnamomi in relation to total soils analyzed in each methodology.  

 

1
st
 baiting selective-medium method  

 

The samples obtained in spring and autumn 2010 were analyzed according to 

methodology adopted by Moreira (2001). 15 g soil was mixed with 20 ml of distilled 

water in a petri dish with 90 mm diameter. It was performed 4 replicates by soil sample. 

After soil sedimentation traps concerning of 15–20 pieces of young cork oak leaves 
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were placed floating under laboratory conditions (20ºC and diffuse daylight, fig. 4.2).  

Up to 3 days of incubation, baits with necrosis were removed, washed with tap water 

and half of them surface sterilized (60 s in 1% aqueous sodium hypochlorite) and 

blotted dry. All baits were then transferred to the MA+PARBHY medium 

 

 

Figure 4.2: Baiting method: 15 g soil submersed in 20 ml of distilled water with floating 

cork oak discs to bait Phytophthora cinnamomi zoospores. 

 

 

Figure 4.3: Direct application of roots onto selective MA+PARBHY medium for Phytophthora 

cinnamomi isolation. 
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 (Jeffers & Martin 1986, Robin 1998) which is partially selective for several 

Phytophthora, including P. cinnamomi (table 4.1). Additionally, some samples of cork 

oak roots were also applied directly onto MA+PARBHY medium (fig. 4.3). 

 

Table 4.1: MA+PARBHY composition for 1 L solution 

Components  Quantity  

Malt extract 15 g 

Agar 20 g 

Pimaricin 10 mg 

Rifampicin 10 mg 

Ampicillin 250 mg 

Benomyl 15 mg 

Hymexazol 50 mg 

Distilled water 1 L 

 

For 1 L solution, malt extract, agar and 990 ml of distilled water were mixed and 

autoclaved at 121ºC for 20 min. Before this, antibiotics and fungicides were stirred in 

10 ml of autoclaved distilled water for complete dissolution. Particularly, benomyl is 

not easily dissolved in water. When the sterilized solution cooled to about 45ºC 

antibiotics and fungicide were added and final solution distributed onto petri dishes with 

60 mm diameter (about 10 ml in each). 

 

If there was mycelium growing in the selective-medium, a small piece was 

removed and placed on the center of petri dishes containing PDA medium (39 g Potato 

Dextrose Agar and 100 ml distilled water, autoclaved at 121ºC for 20 min). If the 

colony developed in the typical rosaceous or camellioid pattern, petri dishes were stored 

at ambient temperature and eventually replicated until molecular analyses for its 

identification.  
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2
nd

 baiting selective-medium method 

 

The samples obtained in spring 2011 were baited with a different methodology: 

Soils inoculum per replica was increased to 25 g and distilled water to 100 ml (fig. 4.4). 

By this means it was expected to enhance P. cinnamomi recovery using more inoculum 

source and increasing soil dilution which is favorable to sporangium formation (Tsao 

1983). Baits placed onto MA-PARBHY medium were not surface sterilized but washed 

with sterilized water and dried on.  

 

 

Figure 4.4: Baiting method: 25 g of soil submersed in 100 ml of water, with floating cork oak 

discs to bait Phytophthora cinnamomi zoospores. 

 

 3
rd

 baiting selective-medium method  

 

Samples obtained in autumn 2011 (4
th

 survey) were baited according to Jung 

(2011). About 1 L of soil sample was flooded with autoclaved water in a plastic 
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container until the distance between the soil surface and waterline was about 3-4 cm. 

Litter and debris were removed from the waterline. Young and intact cork oak leaves 

were placed floating on the water. Right after signs of infection leaves were observed 

under light microscopic for the presence of sporangia and infected tissues were cleaned 

and cut into small pieces and placed onto PARBHY medium. 

 

 

4.4.4 – Nested PCR-based methodology 

 

DNA extraction was performed using three methodologies: 

 

1) PowerSoil DNA Isolation Kit (Mo Bio laboratories, Inc.) was used for DNA 

extraction according to manufactures instructions. A total 60 samples were analyzed, 

each with 250 mg of soil prepared for molecular analyses. Cell lysis occurs by 

mechanical and chemical methods. The mechanical shaking was performed with a 

vortex mixer, after securing tubes horizontally with tape, at maximum speed for 10 

minutes. 

 

2) Alternatively, other 30 subsamples obtained from the same soil used in the 

first method were macerated with liquid nitrogen instead of shaken in the vortex mixer. 

About 40g of the freeze dried soil were macerated with a pestle on a mortar with liquid 

nitrogen. Right after maceration, samples were maintained on ice until stored at -20ºC 

before use. Ceramic mortar and pestles were washed in 1% aqueous sodium 
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hypochlorite and autoclaved at 121ºC for 20 min before reuse. 250 mg of the macerated 

soil was added to the extraction buffer of the PowerSoil DNA Isolation Kit and DNA 

extraction followed the subsequent steps of the kit. 

 

3) Total soil DNA was also extracted using Graham et al. (1994) methodology for 

fungal genomic DNA. Briefly, 30 subsamples with 1 g obtained from the macerated soil 

(prepared as explained above) were added to a 1.5 ml microcentrifuge tube with 1ml 

extraction buffer (2% wt/vol CTAB, 100 mM tris-HCl, 1.4 M NaCl 20 mM EDTA). 

The blend was mixed by gentle inversion and incubated at 55ºC for 20 min, following 

5min centrifugation at 15,000 x g. The supernatant was collected in a new 

microcentrifuge tube and 1 volume of chloroform: isoamyl alcohol (24:1) was added 

and mixed by gentle inversion for 2 min. After centrifugation at 15,000 x g for 20 s, 640 

µl of the upper aqueous phase was collected carefully to a 2 ml microcentrifuge tube 

and 1/10 volumes of ammonium acetate and 2 volumes of ice-cold absolute ethanol 

were added and mixed by gentle inversion. Samples were stored at -20ºC for at least 60 

min to precipitate genomic DNA. Supernatant was discarded after centrifugation at 

15,000 x g for 1 min and the pellet was washed twice with 1 ml of 70% ethanol and air 

dried for about 1 hour. DNA was eluted in 50 µl of TE buffer (10 mM Tris-HCl, 1 mM 

EDTA, pH 8.0).  

Additionally, 6 samples of eluted soil DNA were cleaned with PowerSoil DNA 

Isolation Kit: Addition of a high concentrated salt solution to the eluted soil DNA 

allows binding of DNA to the silica present in the spin filters, but not non-DNA organic 

and inorganic material that pass through the filter membrane. After centrifugation at 

10,000 x g for 1 minute, the flow-through was discarded and the silica membrane of the 

spin filters washed with an ethanol based solution. 2 more centrifugation at 10,000 x g 
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for 1 minute were performed in order to remove the ethanol based solution and to dry 

ethanol residues. DNA was eluted with 100 µl of a elution buffer.  

 

 

DNA quantification  

 

After elution, DNA samples were analyzed in a NanoDrop 2000c/2000 UV-Vis 

Spectrophotometers (Thermo scientific) for nucleic acid concentration and purity 

measurements. 5 samples of total DNA extracted with CTAB protocol was diluted 100 

fold since it showed a yellow-brown color which may interfere with wavelength 

measurements.  

 

PCR amplification protocol 

 

Unless indicated otherwise, PCR amplification conditions were following 

William et al. (2009) nested PCR protocol, developed specifically for P. cinnamomi 

diagnosis from soil samples. The authors designed two sets of primers (table 4.2) 

developed from the rDNA ITS sequences of P. cinnamomi that can detect as little as 1 

pg DNA and used a thermophilic DNA polymerase (Tth
+
, Promega, table 4.3 A) that 

showed to be less sensitive to soil inhibitors. Additionally, it was also tested the Dream 

Taq Polymerase (Fermentas, table 4.3 B) and Supreme NZTaq 2x Green Master Mix 

(Nzytech, table 4.3 C). 
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Table 4.2: Specific primers for amplification of the rDNA ITS region of Phytophthora cinnamomi 

used for first and nested rounds of PCR (William et al. 2009). Tm: melting temperature  

 

Primer Sequence Tm (ºC) PCR 

Reaction 

DNA Fragment 

Size (bp) 

CIN3A CATTAGTTGGGGGCCTGCT 57.7 1st round 
783 

CINITS4 TGCCACCACAAGCACACA 57.9 1st round 

CIN3B ATTAGTTGGGGGCCTGCT 56.6 Nested 
396 

CIN2R CACCTCCATCCACCGACTAC 57.1 Nested 

 

 

PCR cycling consisted of 5 min denaturation at 94ºC, followed by 30 cycles of 

94ºC for 1 min, 60ºC for 1 min, 74ºC for 1 min; and a final extension of 74ºC for 5 min. 

For Dream Taq and Supreme NZTaq denaturation was adjusted to 95ºC.  

 

Nested PCR: For the second round of amplification, products of the first round 

were diluted by 1 ⁄ 100 and 1 µl added to the reaction. The same amplification 

conditions of the 1
st
 round were used for the nested PCR.  

The thermal cycling program was run in a programmable heat block. A negative 

and a positive control were added in each set of 8 reactions. The positive control was 

extracted with the powersoil kit from a P. cinnamomi pure culture obtained with the 

baiting selective-medium method and posteriorly sequenced. For the negative control, 

template DNA was replaced by 1 µl of nuclease-free water in order to test 

contamination of reagents and reaction mixtures. Nested PCR had two negative 

controls, one with no DNA template and a second with a dilution of the negative control 

product of the first round. 
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Table 4.3: Components combined in the reaction mixture to amplify Phytophthora cinnamomi 

DNA by Nested PCR, for 25 µl total volume 

 

A) Using Tth
+
DNA polymerase: 

Reagent Volume (µl) Final concentration 

10X reaction buffer 2.5 10 mM Tris-HCl (PH 9), 50 mM KCl, 0.1% 

Triton X-100 

25 mM MgCl  2 2 mM 

10 mM DNTP’s 0.5 0.2 mM 

2 Primers 5 x 2 1 µM each 

DNA template 1 2.5 ng 

Tth
+
 DNA polymerase  0.5 - 

Nuclease-free water 8.5 - 

 

 B) Using Dream Taq polymerase: 

Reagent Volume (µl) Final concentration 

10X reaction buffer 2.5 20 mM Tris-HCl (PH 8), 1 mM DTT, 0.1 mM 

EDTA, 100 mM KCl, 0.5% (v/v) Nonidet P40, 

0.5% (v/v) Tween 20, 50% (v/v) Glycerol, 2mM 

MgCl 

10 mM DNTP’s 0.5 0.2 mM 

2 Primers 1 x 2 0.5 µM each 

DNA template 1 10 ng 

Dream Taq polymerase 0.5 2.5 U 

Nuclease-free water 14 - 

 

C) Using supreme NZTaq 2x Green Master Mix: 

Reagent Volume (µl) Final concentration 

2x Green Master Mix 12.5 n.a 

2 Primers 1 x 2 0.5 µM each 

DNA template 1 10 ng 

Nuclease-free water 9.5 - 

 

- Several alterations to amplification conditions were performed: 

 

 3 DNA template dilutions were tested: 0.05, 1 and 20 ng in a 25 µl reaction. 

 Annealing temperature in the first round was reduced to 58ºC and in the second 

round was increased to 62ºC and 65ºC. 
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 The first PCR product was diluted ½, 1/50 or added with no dilution to the Nested 

PCR reaction. 

 Reduction in primers concentration to 0.2 µM each 

 To test for potential inhibitors in the DNA template, it was performed several 

different dilutions with total DNA from soil (a positive sample obtained with the 

baiting selective-medium technique) and DNA from a P. cinnamomi pure culture 

(table 4.4) 

 To avoid inhibitory effect of soil extract it was added 400 ng ⁄ µl bovine serum 

albumin and 4% formamide in the PCR reaction (William et al. 2009) 

 

Table 4.4: DNA dilutions tested in Nested PCR reactions for Phytophthora cinnamomi rDNA 

fragment amplification.  

Reaction template DNA (ng / µl) P. cinnamomi DNA (ng / µl) 

1 0.32 - 

2 0.08 - 

3 0.008  - 

4 0.32  0.052  

5 0.64 0.052 

6 0.64 0.026 

7 - 0.002 

 

 

Agarose gel electrophoresis of PCR products 

 

20 µl of the nested PCR reaction was loaded into a 1% (wt/vol) agarose gel in 1x 

Tris-acetate-EDTA (TAE) buffer. Gels were stained by immersion in an ethidium 

bromide solution for 10 min and gel images digitally recorded under UV light. 

Fragment sizes were determined by comparison with a 1 kb Plus molecular weight 

standard (Invitrogen). 
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DNA Sequencing of the amplified products 

 

Fragments with 396 bp from 7 samples were excised from the 1% agarose gel 

and purified using QIAquick Gel PCR purification kit (QIAGEN) according to the 

manufacturer’s instructions and were sequenced using the CIN3B primer in Macrogen 

Standard Sequencing Service (Amsterdam, The Netherlands). DNA sequences were 

compared with the sequences in the National Center of Biotechnology Information 

nucleotide databases (Genbank; Zhang et al. 2000, Morgulis et al. 2008; using the 

BLASTN search:  http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

 

4.4.5- Statistical analyses 

 

Statistical analyses were made using Systat v.13.1 software package. One-way 

ANOVA was used to test significance of differences observed between DNA 

concentration and impurities ratio between the 3 DNA extraction methodologies. 

Significant differences between treatments means were evaluated with Tukey’s HSD 

tests with p < 0.05. Before applying ANOVA tests, data were tested for normality by 

using Kolmogorov-Smirnov test at the significance level of 0.05. A one-sample z-test 

was performed to compare the mean of the total DNA concentration and impurities of 

the 5 diluted CTAB samples with the mean of the not diluted CTAB samples and to 

compare the 6 purified CTAB samples with non- purified CTAB samples . 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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4.4.6 - Phytophthora cinnamomi occurrence in the study site and its relation with 

tree mortality 

 

In each stand, health index was previously calculated based on variation in tree 

density since plot installation and latest cork oak inventory (Ribeiro, unpub. data), 

considering not only dead trees but also tree regeneration. Stand health index = (number 

of dead trees – number of new trees) / number of initial trees. P. cinnamomi occurrence 

in each stand, obtained will all the diagnosis methods, was compared with stand health 

index.  

 

 

4.5 - RESULTS  

 

4.5.1- Baiting and selective-medium methodology 

 

In the 1
st
 survey only one stand (in a total of 19) was positive for P. cinnamomi 

and in the 2
nd

 survey there was 3 positive stands (in a total of 17), all adjacent to each 

other. In the 3
rd

 survey 3 stands from a total of 31 prospected were positive for the 

pathogen. Finally, the 4
th

 survey was on the study-case comprising 4 adjacent stands 

with 12 trees where physiologic analyses were performed for studies described in 

chapter 5. In 6 of the 12 trees P. cinnamomi was already detected in the 2
nd

 survey, thus 

only the remaining 6 trees were prospected again. 1 tree yielded the pathogen in the 

rhizosphere, belonging to a stand were P. cinnamomi was not recovered before. 
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Considering a total of 48 different stands, 16 of them being surveyed twice, P. 

cinnamomi was recovered from only 8 stands, 4 of them during the 2
nd

 survey. 

Regarding sampled trees, the pathogen was recovered in the rhizosphere of 14 trees 

from a total of 138 trees (10.1%, fig. 4.5). According to methodology, success rate 

varied between 4.8% and 16.7% (table 4.5). The roots applied directly in PARBHY 

medium did not yield P. cinnamomi. In samples were P. cinnamomi was recovered no 

other contaminant mycelium had grown.  

 

 

Figure 4.5: Phytophthora cinnamomi recovered from cork oak (Quercus suber) rhizosphere and 

growing on PDA medium forming rosaceous colonies 

 

Table 4.5: Proportion of soil samples, obtained in the rhizosphere of cork oaks (Quercus suber), 

positive for Phytophthora cinnamomi (pc) according to isolation method,  

 

Baiting methodology 
Sampled  

soils (n. trees) 

Positive  

for pc 

Success  

rate (%) 

15 g soil/ 20 ml water, baiting leaf sterilization 

70* 

8 11.4 

15 g soil/ 20 ml water, no baiting leaf sterilization 6 8.6 

25 g soil/ 100 ml water 62 3 4.8 

1 L soil submerged 3 to 4 cm 6 1 16.7 

 
*half of the baiting leaves from each sample were sterilized  
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Baiting selective-medium method faced some difficulties, in particular regarding 

Pythium spp. contamination. In table 4.6 is resumed the difficulties, resolutions 

performed to overcome them and obtained results.  

Table 4.6: Difficulties encountered when using baiting selective-medium method for diagnose of 

Phytophthora cinnamomi, troubleshooting and results obtained 

 

Difficulties Troubleshooting Results 

Overall baiting 

 leaves contamination 

Use of intact leaves instead 

of leaf pieces Reduced contamination of 

the floating leaves 

 (from 70% to 14%) 
Distance of 4 cm from the 

soil surface to waterline 

Growth of other agents in 

MA-PARBHY medium, 

particularly Pythium spp. 

mycelium in 58% of the petri 

dishes with MA-PARBHY 

medium 

Baits surface sterilized 

Reduced contamination by 

62% and yielded P. 

cinnamomi  

Very small fragments of 

infected tissues were placed 

onto MA-PARBHY medium 

Strong reduction in 

contamination (76%) 

Frequent observation of 

growing mycelium for 

posterior subculturing 

Success may be limited to 

low Pythium spp. inoculum 

Low success rate 
Increase in soil amount 

sampled 

Apparently with no 

differences 

 

 

 4.5.2- Nested PCR methodology 

 

60 soil samples were analyzed using different methodologies for DNA 

extraction and PCR reaction. 

 

DNA extraction 

 

Total DNA from each soil sample was extracted using three methodologies. 

DNA concentration obtained with PowerSoil DNA Isolation Kit was similar despite the 
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use of different cells lysis methods (14.4 ± 9.1 ng/µl, p = 0.146). Total DNA obtained 

with CTAB apparently was more concentrated (293.7 ± 157.9 ng/µl) however, excess of 

impurities may result in an overestimation of the nucleic acid concentration. Indeed, 

DNA extracted with CTAB protocol showed lower 260/280 ratio that that with the 

extraction kit (1.73 ± 0.18; Anova: F(2,87) = 10.2; p < 0.001). Dilutions by 1/100 of 6 

samples reduced total DNA concentration (113.94 ± 77.0 ng/µl; Z = -2.5; p = 0.011), 

but not in the proportion of dilution, and 260/280 ratio remained similar (Z = -1.32; p = 

0.188). 6 samples of total DNA extracted with CTAB and posteriorly cleaned with the 

PowerSoil DNA isolation kit reagents showed similar DNA concentration and 

impurities to DNA extracted with the same Kit ([DNA]: Z = -0.9; p = 0.361. 260/280 = 

1.99 ± 0.33; Z = -0.034; p = 0.973). In regard to 260/230 ratio, there was no differences 

between protocols (Anova: F(2,87) = 1.97; p < 0.145), dilutions (Z = -0.31; p = 0.975) and 

posterior DNA cleaning (Z = -0.17; p = 0.867).  

 

PCR amplification protocol 

 

The PCR reaction with Tth
+
 DNA polymerase and DNA template extracted with 

PowerSoil DNA Isolation Kit yielded no positive results, not even the positive control. 

Alterations to PCR conditions, namely DNA and primers dilutions, different annealing 

temperatures and several dilutions of the product from the 1
st
 round to the nested PCR 

did not result in amplification of the positive control as well.  

Both Dream Taq polymerase and Supreme NZTaq polymerase amplify the target 

DNA fragment of the control sample; however, there were only 4 template DNA 

samples that yielded positive reactions (6.7%, fig. 4.6). DNA from the positive results 
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was extracted with PowerSoil DNA Isolation kit after maceration with liquid nitrogen 

and standard amplification conditions with Dream Taq Polymerase, 4.5 to 5 ng template 

DNA and no dilution of the first product to be added to Nested PCR reaction. All the 4 

positive samples were obtained from soils tested with baiting selective-medium 

methodology, and 3 of them were positive for the pathogen using the convencional 

methods .  

 

 
 

Figure 4.6: Amplification of the 396 bp fragment in nested PCR reaction with specific 

primers for Phytophthora cinnamomi  

rDNA ITS amplification fragment: CIN3A and CINITS4 in the 1
st
 round, CIN3B and CIN2R in 

the 2
nd

 round. Fragments were separated on a 1 % agarose TAE gel. 

Lane 1: 1 kb plus ladder as marker. 

Lane 2, 4, 5: template DNA from soils positive for P. cinnamomi with baiting method. 

Lane 3: template DNA from soil not positive for P. cinnamomi with baiting method.  

Lane 6: Negative control 

 

 

 

No other extracted DNA yielded positive results, thought several attempts to 

optimize the reaction were performed. The addiction of P. cinnamomi DNA to soil 
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DNA resulted in positive amplifications, meaning that there was no PCR inhibitors in 

the template DNA solutions (fig. 4.7). As little as 0.02 ng of P. cinnamomi DNA was 

amplified and, in contrast, addiction of as large as 16 ng of template DNA did no 

prevent amplification of the P. cinnamomi DNA. 

 

 
 

Figure 4.7: Optimization of template DNA concentrations and test for potential inhibitor with 

addition of Phytophthora cinnamomi DNA.  

Bands correspond to amplification of the 396 bp fragment in nested PCR reaction with 

specific primers CIN3A and CINITS4 in the 1
st
 round, CIN3B and CIN2R in the 2

nd
 round. 

Fragments were separated on a 1 % agarose TAE gel.  

Lane 1: 1 kb plus ladder as marker 

Lane 2: positive control: 13 ng of P. cinnamomi DNA  

Lane 3: 8 ng of template DNA  

Lane 4: 2 ng of template DNA  

Lane 5: 0.2 ng of template DNA  

Lane 6: 8 ng of template DNA and 1.3 ng of P. cinnamomi DNA  

Lane 7: 16 ng of template DNA and 1.3 ng of P. cinnamomi DNA 

Lane 8: 16 ng of template DNA and 0.65 ng of P. cinnamomi DNA 

Lane 9: 0.054 ng of P. cinnamomi DNA 

Lane 10, 11: Negative controls 

 

 

Total DNA extracted with CTAB methodology did not yield positive results, not 

even after addiction of bovine serum albumin and formamide or after purification with 

appropriate solutions from PowerSoil DNA isolation kit.  
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4.5.3- Phytophthora cinnamomi occurrence and mortality index of the stands 

 

P. cinnamomi was detected in 16.7% of the 44 different prospected stands, being 

more frequent in stands with high mortality though it was also recovered from stands 

with no mortality and from a stand with regeneration (table 4.7).  

 

Table 4.7: Positive Phytophthora cinnamomi recovery from the rhizosphere of cork oaks 

(Quercus suber), in relation to health index of the stands  

Surveyed 

stands  

P. cinnamomi 

recovery 

Success rate 

 (%) 

stand health index  

5 1 20 Positive tree regeneration 

11 1 9 No tree variation 

14 1 7 Tree mortality up to 49% 

14 5 35.7 Tree mortality above 50% 

Health index: (n. dead trees – n. new trees) / initial n. trees in the stand  

 

 

4.6 - DISCUSSION  

 

4.6.1 – Baiting selective-medium methodology 

 

The principal difficulty with the baiting selective-medium was to prevent the 

infection of the baiting leaves by the faster-growing mycelium of Pythium spp. 

Hymexazol, used in the selective-medium, avoids the growth of several Pythium spp. 

(Jeffers & Martin 1986), however, it is not efficient for a some common strains. 

Sterilization of baiting leaves reduced contamination; however, P. cinnamomi recovery 
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was slightly higher when using sterilized leaves: in 8 positive samples, 6 were 

recovered from both sterilized and unsterilized leaves. The other 2 positive samples 

were only recovered from sterilized leaves. This suggests that surface sterilization of 

baiting leaves is a better procedure than no sterilization at all. However,    positive 

results were still very low (8 in 70) and it is possible that surface sterilization also 

reduced P. cinnamomi inoculum along with reduction in contaminants.  

Increasing total soil sample from 10 g to 25 g was not more effective, probably 

because contamination by other agents was still very high (about 70%) and could limit 

Phytophthora slow-growing mycelium.  

Placing intact baits in the selective-medium also resulted in contamination by 

several fungi and Pythium. Although they may not be able to growth in the selective 

medium, infection of the leaves by contaminants would inhibit the desired pathogen. 

Several procedures, applied in the baiting method with 1 L soil, were efficient in 

reducing undesired contaminations. Using intact leaves floating about 4 cm distant from 

the soil surface and then plating out small fragments of the infected tissues, all reduced 

contaminations. Intact leaves are less susceptible to opportunistic pathogens and if 

maintained distant from the soil surface they are less exposed to Pythium sporangia 

(Jung 2011). The use of small pieces of necrotic tissue also reduces contamination since 

they contain less inoculum. However, to increase successful isolations baiting leaves 

should be observed under light microscopic for the presence of Phytophthora sporangia, 

which is time consuming and requires expertise. Although success rate was low with 

this last methodology (1 sample in 6), it was probably due to reduced replicates. The 

method was applied to scrutinize P. cinnamomi in the rhizosphere for the case study of 

tree eco-physiologic measurements (chapter 5) and only 6 samples were needed for 

analyses. Those 6 trees were negative for P. cinnamomi after baiting 15 g soil in the 
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previous surveys. After baiting 1L soil sample and using the above referred procedures 

to reduce contaminations, it was detected 1 positive result. The other 5 negative results 

should be reliable since leaves used to trap Phytophthora spp. were considerably not 

infected by other pathogens, indicating that P. cinnamomi isolation was not severely 

affected by the presence of other contaminants, and failure in detecting the pathogen 

could be attributed to inoculum shortage.  

 

 

4.6.2- Nested PCR methodology 

 

Positive results obtained with PCR diagnosis were inferior to those obtained 

with baiting selective-medium methodology. Several attempts were made to optimize 

the PCR reactions, with no success in detecting P. cinnamomi DNA from the total soil 

DNA extract. All the steps of the procedure were repeated and adjusted to overcome 

possible impediments in DNA amplification, from alterations in cell lysis to the use of 

more soil sample, adjustment of the components in the reaction and alteration of some 

amplification conditions, like temperature annealing. The enzyme recommended in the 

protocol for P. cinnamomi detection from soil DNA through molecular methods 

(Williams et al. 2009) was not effective in amplifying P. cinnamomi DNA from a pure 

culture (positive control), neither after optimization of the annealing temperatures and 

template DNA dilutions. Taq Polymerases (both Dream Taq and Taq polymeraze from 

the Master Mix) always amplified the positive control and were selected in posterior 

amplification attempts. After recurrent negative amplifications of soil DNA extracted 

with PowerSoil DNA Isolation Kit, it was tested if cell lysis was not being performed 



 

81 
 

properly. Following kit protocol, micro-centrifuge tubes were fixed horizontally with 

tape on a vortex mixer to be shaken as recommended; however, they eventually could 

not be shaken evenly or efficiently, leading to inconsistent results or lower yields 

caused by incomplete homogenization and cell lysis (PowerSoil DNA isolation Kit 

instruction manual). Maceration with liquid nitrogen was performed to overcome this 

question, however, total DNA concentration was not superior than that obtained using 

the vortex mixer for homogenization and cell lysis. Nevertheless, the only 4 positive 

results were obtained after maceration with liquid nitrogen previously to DNA 

extraction with PowerSoil DNA isolation kit, using Dream Taq polymerase with the 

conditions described in the methods. Since no more positive results were obtained using 

the same conditions, it was tested the possible existence of PCR inhibitors in the 

template DNA. Addiction of any amount of P. cinnamomi DNA along with template 

DNA did not prevent DNA amplification. Moreover, P. cinnamomi DNA amounts as 

small as 0.002 ng/µl (0.05 ng in a 25 µl reaction) were amplified. This showed that soil 

extracted DNA had no relevant PCR inhibitors and reaction conditions were appropriate 

for DNA amplification. It was then decided to test more soil amounts to increase the 

probability in obtaining P. cinnamomi DNA. CTAB methodology is a cost-friendly 

approach to extract DNA that imposes no limitation in the amount of substrate to be 

used. However, it has the disadvantage of possible contamination by PCR inhibitors co-

extracted along with total DNA from soil samples. Measurements of the DNA purity 

showed high contamination 

William et al. (2009) incorporated bovine serum albumin and formamide to PCR 

reaction and synergistically increased PCR sensitivity and specificity to target DNA. In 

this study, addition of those additives did not yield positive results. These negative 

results could be due to inefficiency of the additives, but the same extracted soil DNA 
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samples were posteriorly cleaned with appropriate reagents and filters resulting in 

purified DNA and results were negative as well. Additionally, DNA concentration was 

similar to that obtained with 250 mg soil samples, though it was used 1 mg soil sample 

for DNA extraction. Therefore, all the realized experiments and adjustments suggested 

that PCR methodology failed in amplifying P. cinnamomi DNA due to lack of target 

DNA. Although William et al. (2009) successfully recovered P. cinnamomi from 1 mg 

soil samples, this study suggests that soil samples with up to 1 mg are very low for P. 

cinnamomi diagnosis through PCR methods. DNA extracted with Powersoil kit was not 

significantly contaminated by impurities like proteins but required only 250 mg of soil 

sample for DNA extract. However, DNA extraction from 1 mg of soil sample through 

CTAB protocol, following purification, did not yield more total DNA.  

Former attempts in detecting P. cinnamomi from 1 g soil samples using a highly 

specific, sensitive and reliable PCR-method based for P. cinnamomi identification 

resulted in no amplification success when soil samples were naturally infested with the 

pathogen, even after purification steps; however, artificial infested soil samples, 

independently of their composition, yielded DNA amplification in a proportion of 100 

ng and more of mycelium to 1 g of soil (Moreira 2001, Moreira et al. 2007). The 

authors considered that failure in detection of the fungus in naturally infested forest soil 

reflected the difficulty of eliminating polymerase inhibitors from this soil. In other 

experiment with naturally infested soil samples, Langrell et al. (2011) used 10 g of soil 

samples for P. cinnamomi and P. cambivora diagnosis and were able to detect the 

pathogens in naturally infested soils; they detected the target DNA but success rate was 

equal to the baiting method. In relation to soils artificially amended with P. cinnamomi 

inoculum, PCR-based methods consistently detect the target DNA, detecting as little as 

1 pg DNA (William et al. 2009, Langrell et al. 2011,). As well, in this study low 
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amounts of P. cinnamomi DNA added to the PCR reaction were amplified, reinforcing 

the assumption that negative amplifications resulted from absence of target DNA and 

not from possible presence of PCR inhibitors. P. cinnamomi is a weak competitor and 

its saprophytic ability improved only in saturated soils. Thus, many naturally infested 

soils have low levels of Phytophthora propagules and their populations can fluctuate 

from non-detectable to a high inoculum density in a very short period of time (Eden et 

al. 2000, Cooke et al. 2007) and that soil sampling represents an important factor with 

respect to detection success (Langrell et al. 2011). Furthermore, P. cinnamomi 

distribution at spatial scales of 1-m intervals was found to be random, independently of 

the health status of the surveyed stands (Pryce et al. 2002). Thus, detection of P. 

cinnamomi in such low amount of soils appears to be a matter of luck and failure in 

detection cannot be considered true negatives.  

Conjoining techniques, like using the baiting selective-medium to trap P. 

cinnamomi propagules and then applying a molecular method in bait tissues (Moreira 

2001), may be an alternative to increase the probability in obtaining the desired DNA. 

Other approaches to attract P. cinnamomi zoospores involve the use of dipsticks coated 

with chemo-attractants, which can be an easy way to concentrate the inoculum on a 

small surface before running a molecular assay (Martin et al. 2000). Nevertheless, 

efficient and reliable methods should allow direct detection in small samples of roots or 

soil without the need for isolation intermediate steps such as the use of baits (Moreira et 

al. 2007). Development of methodologies to increase sensitivity, like Nested or Real-

time PCR instead of conventional PCR, helps amplifying pathogen DNA extracted from 

plant tissue (Martin et al. 2012). Infected tissues, either from baits or host roots, 

probably have an adequate Phytophthora inoculum allowing the use molecular 

techniques for pathogen diagnosis (Moreira et al. 2007). 
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4.6.3- Phytophthora cinnamomi occurrence and stands health index 

 

It is referred that P. cinnamomi detection is reduced in areas with high mortality 

since declining trees are posteriorly affected by opportunistic pathogens, reducing the 

probability of detecting this weak competitor (Tsao 1983, Jung 2011). In the study P. 

cinnamomi was surveyed in the rhizosphere of trees with moderate to low declining 

symptoms -in order to avoid possible antagonism and interference of fast-growing 

associated secondary microflora- regardless of health index of the stands, thus it was 

expected a similar likelihood in detecting P. cinnamomi in any of the stands. Higher 

occurrence of P. cinnamomi in stands with high tree mortality suggests an association 

between the pathogen and tree mortality. However, P. cinnamomi was also present in 

stands with significant regeneration where apparently it as no injurious effect. The role 

of P. cinnamomi in cork oak mortality is considered to be toughly associated with other 

abiotic factors like soil characteristics and climate conditions (Brasier et al. 1993 

Moreira & Martins 2005) and it may be possible to detect the pathogen in apparently 

healthy stands if no other factors are affecting the trees. In declining stands, a synergism 

between P. cinnamomi and unfavorable conditions may cause tree mortality.  

Finally, in the study site management practices like soil tillage with harrowing 

are performed by machines that may spread the pathogen through the stands, along with 

dispersal by water flow. It should be expected that a true negative in pathogen detection 

should be due to the existence of suppressive soils. A reliable method P. cinnamomi 

diagnosis would be an important tool to study the association between tree decline and 

the pathogen, as well identification of suppressive soils for posterior studies.  
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4.7 –Conclusions 

 

Baiting selective-medium technique is cost-saving though time consuming and 

requires expertise for species identification. Moreover, it requires a permanent stock of 

vegetal traps, otherwise diagnosis could only be realized in the appropriate seasons, in 

this case during sprouting of cork oak leaves. On the other hand, molecular methods are 

more expensive and require special equipment, though less time consuming and 

efficient in species identification. However, success obtained with diagnostic PCR was 

negligible probably due to reduced likelihood in obtaining the target DNA from small 

amount of soil samples. Baiting selective-medium methods efficiency was reduced due 

to contamination by opportunistic pathogens, however, it is possible to overcome these 

obstacles through specific approaches, making this method more appropriate for P. 

cinnamomi diagnosis. When detection of P. cinnamomi is not overlaid by contaminants, 

negative results can be interpreted as lack of inoculum in the soil sample, and 

limitations to P. cinnamomi detection can be reported to amount of soil samples. On the 

other hand, using PCR methods to diagnose the pathogen from infected tissue – either 

from host or bait, combining the two methodologies- may be a feasible alternative, with 

emphasis in the detection of the pathogen from naturally infected tissues, avoiding the 

use of several techniques. 
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CHAPTER 5 

 

 

 

Ecophysiologic studies on cork oaks under decline 

 

 

 

 

This chapter was submitted to Tree Physiology with the reference: 

Camilo-Alves CSP, Vaz M, Clara MIE, Ribeiro NMCA. Effect of prolonged stress in 

cork oak water relations – loss of resilience  
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5.1 ABSTRACT  

 

Two main types of syndromes associated to cork oaks (Quercus suber) decline 

have been observed: a sudden death of the tree or a progressive and chronic decline. 

Decline symptoms are unspecific and usually attributed to water stress. In this study it 

was compared leaf water status of 22 declining and 22 asymptomatic cork oak trees in 

spring and summer using a pressure chamber. Reduced cork thickness previously 

observed in declining trees indicated that those trees had been under chronic decline for 

several years. Regardless of health status, all trees were in good watering conditions 

during spring, showing predawn leaf water potential (pd)  -0.4 MPa and midday leaf 

water potential (md)  -2.8 MPa, but in the summer symptomatic trees showed lower 

pd (-1.99 ± 0.60 MPa) compared to asymptomatic trees (pd= -0.80 ± 0.42 MPa). 

However, contrarily to expected, md was higher in declining than in asymptomatic 

trees (-2.81 ± 0.42 and -3.28 ± 0.51 MPa respectively) and, consequently, sapflow 

driving force was found to be 1.66 MPa less in trees suffering chronic decline. Drop of 

pd is usually related to short-term water stress but this study shows that high values of 

md are related to chronic stress. This may occur when stomatal conductance and, 

consequently, transpiration, are significantly reduced. It was measured leaf gas 

exchange and chlorophyll fluorescence in a sub-sample of 12 trees with an infrared gas 

analyzer and leaf chlorophyll content with a portable steady-state photosynthetic system 

and observed that transpiration, stomatal conductance, efficiency and quantum yield of 

photosystem II, as well chlorophyll content were lower in declining trees in comparison 

to asymptomatic ones during the dry season. Lower summer sapflow driving force and 

down-regulation of photosynthesis suggests that chronic dieback is associated to 

reduction in nutrient root uptake and/or leaf carbon assimilation, eventually leading to 
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plant death of starvation. On the other hand, one tree underwent sudden death after this 

study. This tree presented the lowest predawn leaf water potential (pd= -3.62; md= -

3.75 MPa) well below the cavitation threshold (-3 MPa) suggesting mortality caused by 

dehydration. Contrarily to chronic decline, where dying trees close stomata to avoid 

hydraulic failure, limiting CO2 and nutrients uptake, “sudden death” appears to be a 

result of stomatal control failure in preventing xylem cavitation and runaway embolism 

– in accordance with the hydraulic-failure hypothesis. Finally, analyses to relative 

amount of shallow fine roots showed no relation with tree health status, but a significant 

association with P. cinnamomi occurrence. Tree water status was related to fine-root 

ratio, thought one could not infer causality and further studies are needed to infer the 

role of shallow fine roots in tree water status. P. cinnamomi effects on tree physiology 

were linked to symptoms of water stress, even when pathogen presence was not 

associated to decrease in tree water status. Starch content in coarse roots was vestigial 

and in leaves was only 7.24 ± 0. 91 mg g
-1

, though a slightly more was measured in 

leaves from trees under P. cinnamomi effect (8.94 ± 1.09 mg g
-1

) which could be due to 

sink-limitations of the trees. More studies are needed to understand the role of starch 

mobilization in cork oaks affected by the pathogen.  

 

 

5.2- INTRODUCTION  

 

Cork oaks (Quercus suber) are of high conservation and socioeconomic value 

within their areas of geographic distribution around the Mediterranean basin (DGRF et 

al. 2007). Cork is the outer layer that covers the tree trunk and branches and is removed 

every 9 years for commercial purposes. It is the main product obtained from this 
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silvopastoral system with its global production reaching 201.428 ton in 2010 and cork 

stoppers correspond to 70% of cork market (APCOR 2011). However, cork oaks are 

facing disturbances that are reducing their resilience, affecting the sustainability of the 

system. Two main types of syndromes associated to decline have been observed (Cobos 

et al. 1992; Tuset et al. 1996; Gallego et al. 1999; CAMA 2001; Moreira 2001; Ruiu 

2006; Sousa et al. 2007): (1) a sudden death of the tree, characterized by the fast drying 

of the crown followed by tree death in one or two seasons, particularly in early summer 

after the winter rains and in early autumn following the dry season; yellow or brown 

leaves may remain attached to the tree for some time. (2) A progressive decline and 

gradual loss of foliage, where the first symptoms are drying of the tree top and 

sprouting of epicormic shoots, an intense leaf drop which may affect the whole crown 

or only some branches. Decline symptoms are unspecific and are usually attributed to 

water stress. Factors promoting impaired water absorption have been studied and were 

mainly attributed to drought (Macara 1975; Cabral et al. 1992; LLoret & Siscart 1995; 

Peñuelas et al. 2001), to soil characteristics that may limit root expansion (Bernardo et 

al 1992; Ribeiro and Surový 2007; Costa et al 2010) or root rot caused by the soilborne 

root pathogen Phytophthora cinnamomi associated to unfavorable abiotic conditions 

(Cobos et al 1992; Brasier et al 1993, Robin et al 1998; Sánchez et al 2002; Moreira and 

Martins 2005). 

Mediterranean-climate regions are characterized by recurrent droughts, with 

90% of annual precipitation falling in the six cool season months, and frequent periods 

of extended summer drought (Rundel et al. 1995) which may be aggravated in the 

future. According to most climate change scenarios for the region, the severity of the 

summer drought may increase as well as the frequency of severe droughts (Miranda et 

al. 2002; Giorgi & Lionello 2008). Several studies on physiologic responses of adult 
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cork oak trees to environmental stress, specially short-term droughts, have been 

performed (e.g., Faria et al. 1996; Garcia-Plazaola et al. 1997; Faria et al. 1998; Otieno 

et al 2006; Passarinho et al 2006; David et al. 2007; Otieno et al 2007; Grant et al. 2010; 

Vaz et al 2011; Pinto et al 2012). However, to our knowledge there are no published 

studies under field conditions on the physiologic status of cork oak trees showing 

chronic decline, nor on the physiologic differences between each type of declining 

syndrome. Studies on trees pushed beyond their optimal conditions for a long term will 

provide information about their physiological limitations to overcome stress events and 

may help us to minimize or reverse injury. 

 

 

5.3- OBJECTIVES  

 

Since water stress, irrespective of its origin, is considered the main cause of cork 

oak decline, this study focused on seasonal water relations of 43 Q. suber showing 

decline symptoms and asymptomatic ones under natural conditions. The study was 

complemented with exploratory measurements realized in a case-study of 12 trees 

located in 4 adjacent stands. In the case study several ecophysiologic measurements 

were realized in order to analyze tree physiologic status and in relation to occurrence of 

P. cinnamomi in the rhizosphere, and to fine-root ratio of the trees. The goal of the 

study was to analyze if: 1) trees suffering chronic decline present different water status 

than healthy trees under short-term water stress and 2) There was variation in 

photosynthetic parameters according to tree health status. 3) Tree water status was 

related to fine roots amount. 4) There could be physiologic differences between trees 

under water stress and trees with P. cinnamomi in the rhizosphere. 
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5.4- MATERIAL AND METHODS  

 

5.4.1- Study site 

 

The present study was carried out in 2010, between June and September, at 

Herdade da Machoqueira do Grou, Coruche, Portugal (see chapter 4 for the description). 

In winter and early spring precipitation was higher than long-term mean in Portugal 

(1971 to 2000, fig. 5.1) and cumulative precipitation between October 2009 and March 

2010 was 40% higher than average for the region (IPMA 2010, 2011).  

 

 

 
 

Figure 5.1: Monthly long-term average precipitation (1971-2000) and monthly precipitation in the 

year 2010 for Coruche region. 

 

 

Eight managed cork oak stands were selected for the study, differing in soil 

conditions and mortality rate. Five stands located on Cambisols soils have no relevant 

limitations to cork oak growth and the remain three stands, located on gleyc lixisols and 

fluvisols soils, show deficient water drainage and present excess water holding capacity 
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for cork oak growth. Four to eight trees per stand, in a total of 43 trees, were selected in 

order to measure water status during two seasons. Perimeter at breast height (PBH) was 

about 33.76 ± 12.4 cm and trees were 9.18 ± 1.54 m high. About half of them presented 

decline symptoms like upper dead branches and epicormic shoots. The remaining trees 

were asymptomatic. For some statistical analyses, trees were divided into three classes: 

0 – no declining symptoms; 1 – declining trees alive in the following year (2011); 2 - 

declining trees dead in the following year (2011); 3 – trees with sudden death symptom 

by the end of the summer (2010). Additionally, a sub-set of 12 trees, 7 of them 

presenting decline symptoms, were selected in 4 adjacent stands. This case study was 

performed in 3 stands with pronounced mortality were P. cinnamomi is active (chapter 

4) and probably plays an important role in tree decline. From the 7 selected trees, all 

presented P. cinnamomi in the rhizosphere and 5 of them declining symptoms. In the 4
th

 

stand mortality rate was null, though 2 of the selected 5 trees showed upper branch 

dieback. Only 1 of the 2 declining trees had P. cinnamomi in the rhizosphere, according 

to previous surveys (chapter 4). 

 

 

5.4.2- Dendrometric measurements  

 

In 2007 and 2008 perimeter at breast waist was measured before (PBHb) and 

after (PBHa) cork extraction. Cork thickness was determined using the formula:(PBHb 

– PBHa) / 2. Trunk diameter increment was calculated as follows: (PBHa – PBH) / 2, 

where PBH is the initial perimeter at breast waist measured during plots installation, in 

1995. 
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5.4.3- Water potential measurements 

 

Predawn leaf water potential (pd) and midday leaf water potential (md) were 

measured using a Scholander pressure chamber (PMS 1000, PMS Instruments, 

Corvallis, Ore., Scholander et al. 1965). Three to four leaves from the south-facing side 

of the crown were sampled just prior to sunrise and at midday (12–13 h, local time). 

Samples were taken at similar height above ground to avoid variability due to 

hydrostatic water potential and leaf water potential was measured immediately after 

cutting. Measurements where realized during spring (June) and summer (August/ 

September) 2010.  

 

5.4.4- Root measurements 

 

The subsample of 12 trees was selected in order to avoid great proximity 

between trees, in order to reduce the probability of acquiring roots from other trees. 

Trees were distant from neighboring by at least 8 m. Shrubs are removed periodically 

through harrowing, and cattle is allowed to pasture in the stands, thus, no significant 

shrubs, whose roots may be mistaken with cork oak roots, grow in the study area. Grass 

roots can be easily identified and removed from the soil samples. Soil monoliths with 30 

x 30 x30 cm were collected in four locations distant 1m from the trunk base of each 

tree. When cutting soil monoliths, it was observed if coarse roots were attached to main 

roots from the trees. Soil monoliths were transported to laboratory, where roots were 

sieved from the soil and carefully washed with tap water. Root samples were oven-dried 

at 80ºC during three days after what they were separate into fine roots (non-lignified 

roots, about up to 0.5 mm diameter) and coarse roots, measured and weighted.  
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5.4.5- Instantaneous gas exchange and chlorophyll fluorescence measurements 

 

In the same sub-sample of 12 trees used for root analyzes, leaf gas exchange was 

determined simultaneously with measurements of chlorophyll fluorescence using the 

open gas exchange system Li-6400 (LI-COR Inc., Lincoln, NE, USA) with an 

integrated fluorescence chamber head (Li-6400-40; LI-COR Inc.). All measurements 

were made on young, fully expanded leaves, with photon flux density (PFD) at 1500 

µmol m
2
 s

1
, with a CO2 concentration in the leaf cuvette of 400 μlmol CO2 per mol air. 

Block temperature was kept at 30 C during all measurements.Measurements  were 

realized in summer  in the morning period (10.00–11.00 h, local time) on four sun 

exposed leaves per tree.  

The actual photochemical efficiency of photosystem II (/PSII) was determined by 

measuring steady-state fluorescence (Fs) and maximum fluorescence (F´m) during a 

light-saturating pulse of 8000 µmol photon m-2 s-1 following the procedures of Genty 

et al. (1989): 

       
      

   
  

The electron transport rate (Jflu) was then calculated as: 

                    

where PPFD is the photosynthetically active photon flux density,   is leaf absorptance 

and   reflects the partitioning of absorbed quanta between photosystems II and I. The 

product     was determined, following Valentini et al. (1995), from the relationship 

between /PSII and /CO2 obtained by varying either light intensity under non-

photorespiratory conditions in an atmosphere containing less than 1% O2. 
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5.4.6- Starch measurements 

 

In the sub-sample of 12 trees it was measured starch reserves from coarse roots 

with about 5 mm root and leaves collected in August. Bark and heartwood from roots 

were discarded. The remaining sapwood tissues and leaves were oven dried for 48h, 

being grinded and analyzed in duplicates for starch reserves using the amyloglucosidade 

α-amylase method (total starch kit, megazyme®). Initially, all glucose and 

maltodextrins were first removed from the samples with an 80% ethanol solution at 

85ºC for 5 min and resistant starch was pre-dissolved by stirring the samples with 

dimethyl sulphoxide at 100ºC. Thereafter, starch was hydrolyzed into maltodextrins and 

then into glucose, following the manufacturer protocol. Glucose was quantitatively 

measured in a colorimetric reaction and the absorbance for each sample was read at510 

nm in a spectrophotometer. Starch was estimated according to the following equation: 

Starch (g /100 g) = A * F * 1.8 

A = Absorbance (reaction) read against the reagent blank. 

  (                                )   
                  

                                
 

 

The same procedure was applied in leaves collected during summer. 

 

5.4.7- Chlorophyll measurements 

 

In the sub-sample of 12 trees, relative chlorophyll content was measured with a 

portable chlorophyll analyzer (Hansatech chlorophyll meter CL-01) and, in addition, 

chlorophyll concentration was also determined using an extraction method: Six circular 

disks, each 6.25 mm in diameter, were punched from the leaves where optical properties 

were measured. The disks were placed immediately into 8 mL of 100% methanol, and 
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pigments were allowed to extract in the dark at 30ºC for 24 h. Absorbances (A) of the 

clear extract at 652.0, 665.2, and 750 nm were read with a spectrophotometer and 

concentrations of chlorophylls a, b, were computed after Porra et al. (1989). 

Measurements at wavelength of 750 nm are used to correct turbidity and contaminating 

colored compounds but in these samples they were virtually zero.  

 

Equations for chlorophyll concentration extracted with methanol, in nmol ml
-1

 

Chlorophyll a = 18.22 * A665.2 – 9.55 * A652.0 

Chlorophyll b = 33.78 * A652.0– 14.96 * A665.2 

Chlorophyll a+ b = 24.23 * A652.0– 3.26 * A665.2 

Chlorophyll concentration of the extract (8 ml) was related to total disk surface area of 

1.84 cm
2 

[6 leaves each with area = 3.14 * (6.25mm / 2) 
2
] were used to compute leaf 

chlorophyll concentrations per unit projected area. 

 

5.4.8- Specific leaf area determination 

 

To determine Specific leaf area (SLA, cm
2
 g

-1
), 20 leaves collected during 

summer from the sub-sample of 12 trees transported to the laboratory in refrigerated 

bags to avoid weight loss by respiration, oven-dried at 80ºC for 48 h, weighted after 

petiole removal and digitalized to calculate surface area with Imaje J 1.45s software.  

 

5.4.9- Phytophthora cinnamomi occurrence 

 

Occurrence of P. cinnamomi in the rhizosphere of each tree from the subsample 

was tested using the baiting selective-medium referred in chapter 4.  
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5.4.10- Statistical analyses  

 

Statistical analyses were made using Systat v.13.1 software package. One-way 

ANOVA was used to test significance of differences observed between tree health status 

and cork thickness, trunk diameter and tree water status along seasons. Significant 

differences between treatments means were evaluated with Tukey’s HSD tests with 

p<0.05. Before applying ANOVA tests, data were tested for normality by using 

Kolmogorov-Smirnov D test at the significance level of 0.05. When variance across 

groups was unequal, i.e. the usual ANOVA assumptions were not satisfied, the Welch-

ANOVA test was applied. Two-sample T-Test with separate variance was used to 

compare significant differences between the means of tree water status according to soil 

limitations, and between the means of photosynthetic parameters according to tree 

health status and P. cinnamomi occurrence. Linear regression was applied to assess 

relationship between fine root ratio and pd. Principal components analysis was applied 

to correlate ecophysiologic parameters with fine root ratio, P. cinnamomi occurrence 

and tree health status in the subsample of 12 trees.  

All measurements shown are the mean ± standard error of the mean.  
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5.5- RESULTS 

 

5.5.1- Cork thickness 

 

Thickness of the 9 years old cork that was extracted two to three years before the 

study was on average 26.25 ± 8.34 mm and was thicker in healthy trees. Trees that died 

in the year following this study presented the narrowest cork (p < 0.001, fig. 5.2). On 

the other hand, there was no relation between tree health status and trunk diameter 

increment since plots installation (p = 0.456). 

 

 

5.5.2- Trees water status 

 

Variations in  related to tree health status were only observed during summer 

(table 5.1). In spring, all trees showed high pd and water status decrease equally at 

midday, resulting in similar sap flow driving force (pd - md) regardless of tree health 

status. In summer, trees were not able to maintain the same pd observed in spring, but 

reduction was stronger in declining trees (p  0.001, fig. 5.3).  
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Figure 5.2: Relationship between thickness of the 9 years old cork extracted in 2007 and 2008 

and tree health status (n= 37) classified in 2010 according to decline symptoms: 0- 

asymptomatic, 1- trees with upper branch dieback and epicormic shoots, 2- symptomatic trees 

considered dead in 2011, 3- tree that suffers from sudden death in the end of the summer 

2010. Different letters denote statistically significant differences at the 5% level 

 

On the other hand, significant variation in md along seasons was only observed in 

healthy trees, showing reducedmd in summer and maintaining the same sapflow 

driving force along seasons (fig. 5.4). Therefore, contrary to what was expected trees 

showing symptoms of water stress were better hydrated at midday summer than 

asymptomatic trees (p = 0.002, fig. 5.3) and, consequently, sap flow driving force was 

strongly reduced (table 5.1, fig. 5.4). In the year following this study, six of the 

declining trees were considered dead and cut down. Yet, during the study those trees 

had the same summer water status than the remaining declining trees (pd: p = 0.13; 

md: p = 0.39; sap flow driving force: p = 0.09; fig. 5.3 and 5.4).  
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Table 5.1: Average water status and physiologic parameters on asymptomatic and declining 
Quercus suber trees (n= 43).  

 
                    Spring                Summer 

Parameter Asymptomatic 

trees 

Declining 

 trees 

Asymptomatic 

trees 

Declining 

Trees* 

pd (MPa) -0.44 ± 0.227
a
 -0,41 ± 0,16

a
 -0.80 ± 0.42

b
 -1.99 ± 0.60

c
 

md (MPa) -2.92 ± 0.48
ab

 -2,78 ± 0,43
a
 -3.28 ± 0.51

b
 -2.81± 0.42

a
 

pd -md (MPa)   2,48 ± 0,50
a  

  2.37 ± 0.51
a
 2.48 ± 0.71

a
  0.82 ± 0.72

b
 

gs** (mol m
-2

 s
-1

) 
  

0.24 ± 0.09
a
  0.10± 0.02

b
 

A** (µmol CO2 m
-2

 s
-1

)  7.82 ± 5.39
a
  1.93 ± 1.81

b 

WUE (A/gs) **  

(µmol CO2 mol
-1

 H2O) 
 31.54 ± 3,78

a 
20.01 ± 8.18

b 

E** (mmol m
-2

 s
-1

)   5.74 ± 3.79
a 

2.02 ± 0.18
b 

Ci** (ppm)   294.0 ± 28.7
a 

322.9 ± 27.9
b 

F’V/F’M**   0.63 ± 0.55
a 

0.43 ± 0.05
b 

ɸPSII**   0.27 ± 0.20
a 

0.14 ± 0.01
b 

QP**   0.45 ± 0.37
a 

0.32 ± 0.05
a 

QN**   2.75 ± 2.30
a 

1.79 ± 0.16
b 

Leaf chlorophyll µmol m
-2

**  401.6 ± 41.0
a 

300.9 ± 30.5
b
 

Fine roots (g) / coarse roots (m)** 
 

 21.80 ± 14.12
a 

7.61 ± 7.08
a 

 
Declining trees presented upper branch dieback and epicormic shoots. Different letters denote 

statistically significant differences at the 5% level. pd: Predawn leaf water potential; md: 

midday leaf water potential; pd -md: sapflow driving force; gs: stomatal conductance; A: 

photosynthetic rate; WUE: intrinsic water-use efficiency; E: transpiration rate; Ci: intercellular 

CO2 concentration; F’V/F’M: maximum efficiency of photosystem II; ɸPSII: quantum yield of 

photosystem II; QP: photochemical quenching; QN: non-photochemical quenching. 

* Excluded values from the tree that showed sudden death 

** n = 12 

**n = 12 

 

 

Another declining tree suffered from sudden death by the end of the summer in the year 

of the study. Contrarily to others that became gradually defoliated, this one showed a 

different dieback symptomatology, where leaves suffered chlorosis in a few weeks and 

remained attached to branches. This tree presented the lowest predawn leaf water 

potential (pd = -3.62; md = -3.75 MPa, fig. 5.3). 
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Figure 5.3: Water status of Quercus suber trees (n = 43) at (A) predawn and (B) midday 

measured in summer 2010, according to tree health status. Decline symptoms: 0- 

asymptomatic, 1- trees with upper branch dieback and epicormic shoots, 2- symptomatic trees 

considered dead in 2011, 3- tree that suffers from sudden death in the end of the summer 2010. 

Different letters denote statistically significant differences at the 5% level 

 

 

Figure 5.4: Sapflow driving force of Quercus suber trees (n= 43) measured in summer 2010 

according to decline symptoms: 0- asymptomatic, 1- trees with upper branch dieback and 

epicormic shoots, 2- symptomatic trees considered dead in 2011, 3- tree that suffers from 

sudden death in the end of the summer 2010. Different letters denote statistically significant 

differences at the 5% level. 
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5.5.3-Gas exchange and chlorophyll fluorescence measurements 

 

Physiologic analysis realized in summer on the subsample showed that declining 

trees had reduced leaf gas exchange, but reduction in net CO2 assimilation was not 

accompanied by reduction in intercellular CO2 concentration in the mesophyll, though it 

was accompanied by decline in efficiency, quantum yield of photosystem II and leaf 

chlorophyll content (table 5.1). Declining trees also showed reduction in water used 

efficiency and non-photochemical quenching. 

 

 

5.5.4-Fine root ratio 

 

There was not enough independent data to apply statistical analyses to infer a 

relation between soil limitation and root ratio, but it was observed that all trees located 

in soils with tendency to accumulate water had reduced fine-roots ratio (fig. 5.5) and, 

moreover, trees in soils with deficient water drainage were the poorest hydrated at 

predawn in summer (p = 0.001; fig. 5.6). Accordingly, in the sub-sample it was 

observed a gradual decrease in pd associated to reduction in fine root ratio (p = 0.04, 

fig. 5.7). 

Reduction in fine-root ratio was strongly related with P. cinnamomi occurrence 

(fig.5.7). Trees with the pathogen in the rhizosphere had less than 11g of unlignified 

fine roots by 1m of lignified roots. In contrast, trees where the pathogen had not been 

recovered showed more than 15 gm
-1

. 
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Figure 5.5: Shallow fine root ratio of Quercus suber trees (n= 12) in relation to stand soil 

limitations regarding water drainage. Similar symbols denote trees in the same stand 

 

 

 

 
Figure 5.6: Predawn water status of Quercus suber trees (n= 43) measured in summer 2010 in 

relation to stand soil limitations regarding water drainage. Different letters denote statistically 

significant differences at the 5% level. Tree that suffers from sudden death was not considered 

in statistical analyze 
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Figure 5.7: Association between predawn leaf water potential and shallow fine root ratio of 

Quercus suber trees (n= 12) in relation to Phytophthora cinnamomi occurrence and tree health 

status 

 

 

5.5.5- Relationship between Phytophthora cinnamomi occurrence and trees 

parameters 

 

With principal component analyzes, parameters were not clearly separated since 

there were somewhat correlated, but it was possible to observe a tendency to separate 

parameter related to pd with parameters related to P. cinnamomi occurrence. 

Accordingly, tree health status was strongly related with pd and efficiency of 

photosystem II. On the other hand, fine-root ratio and leaf starch content were 

associated with P. cinnamomi occurrence (fig. 5.8, table 5.2). Other parameters like 

stomatal conductance, photosynthesis and chlorophyll content were partially associated 

to both groups. In fact, those parameters are significantly related to either pd and P. 

cinnamomi occurrence (T-tests: p< 0.05)  
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Figure 5.8: Principal component analysis of the ecophysiologic and structural parameters 

measured in healthy and declining Quercus suber affected or not by Phytophthora cinnamomi 

 

 

 

 

Table 5.2: Correlation between the parameters and the factors extracted with principal 

component analyses.  

 Parameter  Factor 1 Factor 2 

Tree health status -0.923 -0.098 

pd  0.846  0.251 

F’V / F’M  0.796  0.531 

Photosynthetic rate  0.693  0.622 

Stomatal conductance  0.662  0.606 

Specific leaf area  0.658  0.306 

Chlorophyll content  0.624  0.720 

Leaf starch content -0.057 -0.919 

Fine-root ratio  0.367  0.838 

P. cinnamomi occurrence -0.433 -0.801 

 
Extraction method: Maximum likelihood. Rotation method: Varimax with Kaiser normalization. In 

bold the 3 parameters that explain better each factor 
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Leaf starch content was the only parameter related to the presence of P. 

cinnamomi (T-test: p = 0.024) and not with tree health status or tree water status (T-

tests: p> 0.05) being significantly higher in trees affected by the pathogen (8.94 ± 1.09 

mg g
-1 

vs. 7.24 ± 0. 91 mg g
-1

; fig. 5.9). 

 

 

Figure 5.9: Box plot of Quercus suber leaf starch content in relation to Phytophthora cinnamomi 

recovery in the rhizosphere  

 

 

5.6- DISCUSSION 

 

5.6.1- Effect of prolonged stress in cork oak water relations: loss of resilience 

 

Dieback of branches and epicormic shoots are unspecific symptoms and can be 

associated with changes in soil moisture or virulent pathogens (Ciesla & Donaubauer 

1994). Epicormic shoots, common in oaks, are often stimulated by sudden exposure to 
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light (Kerr & Harmer 2001; Kozlowski & Pallardy 1997) which, in turn, may be a 

consequence of defoliation after decline in water supply (Larcher 1995). Dieback of the 

most upper twigs suggests impairment in tree water balance. In fact, those symptoms 

were strongly associated to low tree water status (fig. 5.8, table 5.2). In general the 

upper part of the canopy is subjected to the lowest tree water potential because of the 

greater effect of the gravity (Larcher 1995) and hydraulic architecture of the tree (Tyree 

& Sperry 1989). As decline in water supply intensifies, embolism will preferentially 

occur in minor branches where xylem tensions are greatest (Tyree & Sperry 1989; Rust 

& Rolof 2002). After branch shedding trees shrink in height (Ribeiro 2006) but 

eventually improve water balance in surviving shoots (Tyree & Sperry 1989), indicating 

that branch sacrifice may provide adaptation to drought events (Rood et al. 2000). 

However, though branch dieback and epicormic leaves are an indication that trees are 

under stressful events, it is difficult to infer whether it refers to a temporary situation or 

that the trees are under chronic stress. In this study it was analyzed cork thickness since 

it may be a good indicator of the long term tree water status. Several studies reported an 

association of cork thickness with water availability, as cork growth was limited in trees 

subjected to drought (Caritat et al. 2000) and trees presenting symptoms of water stress, 

like upper branches dryness and defoliation, tend to have narrower cork width (Costa et 

al. 2003; Ben Jamâa et al. 2005). Furthermore, cork thickness is related to variables that 

interfere with tree water availability, like tree size (Ben Jamâa et al. 2005; Sánchez-

Gonzaléz et al. 2007) and intra-competition (Ribeiro 2006; Sánchez-Gonzaléz et al. 

2007). Usually, plants under water stress show reduction in photoassimilates and 

increase their allocation to root growth in order to increase root/shoot ratio (Dickson 

and Tomlinson 96). Particularly in healthy cork oaks, trunk increment is related to 

climatic variation but cork increment show less inter-annual variations (Costa et al. 
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2002), however, trees in poor sanitary conditions have narrower cork (Costa et al. 

2003). Our results are in accordance since only cork thickness is related to tree health 

(fig. 5.2). In order to occur significant reduction in cork development, trees should be 

under intense environmental stress and reduced cork thickness indicates that the studied 

symptomatic trees where under chronic decline.  

Although summer precipitation was insignificant during the study year (fig. 5.1), 

cumulative precipitation in previous seasons was considerably higher than long-term 

mean and deep water resources should be still available for tap root trees uptake in the 

dry season. Thus, asymptomatic trees were in good hydric conditions at predawn by the 

end of the dry season (table 5.1, fig. 5.3): average summer pd slightly decline and was 

higher than -1 MPa. Other authors found markedly reduced values during the same 

season, usually lower than -2 MPa (e.g. Chaves et al. 2002; Otieno et al. 2007; David et 

al. 2007; Vaz et al 2010; Pinto et al. 2012) which were associated to years with lower 

precipitation than average and/or limitations in root access to groundwater. The role of 

deep water sources in maintaining a good tree water status during summer is an 

important strategy for sclerophyllous oaks survival in the hot and dry conditions of the 

south Iberian Peninsula (David et al. 2004; Otieno et al. 2006). The authors observed 

that during summer water is extracted progressively from shallow to deeper soil layers 

and differences in summer pd among trees is usually related to differences in access to 

soil water resources at progressively deeper soil layers. Thus, plant potentials reflect the 

wettest soil water potential accessed by roots (Otieno et al 2006, David et al. 2007).  

Moreover, tap roots access of deep water resources also facilitates shallow root growth 

and persistence by hydrating them during the summer night through hydraulic lift, i.e. a 

passive mechanism driven by a water potential gradient that transports water through 

the root system from deep moist soil layers up to shallower and drier soil layers 
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(Richards and Caldwell 1987, Caldwell et al. 1998, Kurz-Besson et al. 2006, 

Nadezhdina et al 2008). Therefore, differences in water status found between 

asymptomatic and declining trees in this study, as well differences in fine root survival, 

may reflect different access to deep soil water resources by the trees.  

Reduction in fine roots may also be caused by excess water, since waterlogging 

causes cork oak root hypoxia (Jacobs et al.1996). There was no trees in soils with 

deficient water drainage with fine root ratio as high as values found in soils with 

appropriate water drainage (fig. 5.5) and, additionally, there was a significant tendency 

to find less hydrated trees in soils with excess water retention (fig. 5.6).However, 

Ribeiro (2006) found no relationship between deficient soil drainage and mortality for 

the same study area; instead, mortality was related to soil depth and was higher in soils 

limiting access to deep water sources, suggesting the importance of the deep root 

system in cork oak survival. Other studies also reinforce the role of deep roots in 

maintaining tree water status during the dry season (Otieno et al 2006, David et al 

2007), but the association between tree water status and shallow fine roots in adult trees 

remains to be established.  

In our study, cork oaks showing chronic stress symptoms were able to maintain 

high pd during the growing season (spring, table 5.1) and the significant decrease 

inmd indicates they are transpiring as healthy ones. This pattern was also observed in 

holm oaks affected trees, with pd measured during the wet seasons was as high as in 

healthy trees (Sala & Tenhunen 1994). However, plants with favorable water status in 

the rainy season may already have some physiological functions, like photosynthesis, 

affected by chronic stress. This was observed in holm oak seedlings subjected to 

repeated drought, where seedlings presented appropriate water status during the re-

watering cycles, but photosynthesis recovered only to 80% of control values due to 
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persistently low stomatal and mesophyll conductances to CO2 (Galle et al 2011). 

Drought associated with high temperatures and excess of light may result in a chronic 

photoinhibition or down-regulation of photosynthesis (Osmond 1994; Ripullone et al. 

2009).In fact, our results show that summer reduction in the photosynthetic apparatus 

was stronger in declining trees. In studies concerning healthy trees suffering seasonal 

drought events (Faria et al. 1998, Chaves et al. 2002, Grant et al. 2010, Vaz et al. 2011) 

it was also observed a decrease in the pool and efficiency of the photosystem II open 

centers, driven by low chlorophyll content. However, plant water use efficiency 

increases with water stress, as well plant ability to dissipate excitation energy by other 

mechanisms than photosynthetic C-metabolism (non-photochemical quenching). In this 

study, reduction in water use efficiency observed in trees under chronic decline, along 

with high intercellular CO2, shows the role of non-stomatal limitation of photosynthesis 

under increasing drought conditions (Shardendu et al. 2011). Although this study shows 

that trees under chronic stress are less protected against the potential for photo-oxidative 

damage since they show inferior values of non-photochemical quenching (Müller et al. 

2001), higher values of initial fluorescence may suggest some protection against heat 

stress (Chaves et al. 2002). 

Differences between healthy and declining tree water status were visible only 

during the drought period: reduced sapflow driving force as well reduced stomatal 

conductance found in declining trees in the dry season (table 5.1, fig. 5.4) suggest a 

strong stomatal control in order to avoid runaway embolism caused by water loss 

through transpiration until below the xylem cavitation threshold (Vilagrosa et al. 2003). 

These results are consistent with carbon-starvation hypothesis that associates stomatal 

closure to prevent hydraulic failure during long lasting drought conditions and reduction 

of photosynthetic uptake of carbon, as well mineral absorption by the roots, until the 
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plant starves (McDowell et al. 2008). In other studies (David et al. 2004; Otieno et al. 

2006; Pinto et al. 2012), non-symptomatic cork oaks subjected to summer water stress 

(with pd lower than -2MPa) presented higher sap flow driving force due to lower md, 

indicating that occasional drought did not force trees to markedly reduce transpiration: 

healthy trees allow the drop of  to about -3 MPa, operating near the critical value (-2.9 

MPa; Pinto et al. 2012) when occurs 50% loss in hydraulic conductivity. Although 

predawn water status indicates that trees are under temporary water shortage, in this 

study it was found that midday water status was related to chronic water stress and, 

contrary to expected, was higher in symptomatic trees (fig. 5.3). To our knowledge this 

was not yet reported and it is significant since it shows that the main cause of chronic 

decline is not associated to reduction in tree water status to below safety margins. This 

assumption is reinforced by similar water status and sap flow driving force in trees at 

different stages of decline (fig. 5.3 and 5.4), indicating that mortality was not a 

consequence of tree dehydration. Instead, our results showed that chronic decline is 

associated to reduction in transpiration caused by stomata closure and down-regulation 

of photosynthesis. Limitation in water flow through the soil-plant-atmosphere 

continuum may reduce mineral root uptake, down-regulation of photosynthesis reduces 

leaf carbon assimilation and plants will eventually die of starvation (Kramer and Boyer 

1995). Healthy trees subjected to recurrent droughts or dryer conditions acclimatize 

their metabolic and structural capabilities in order to improve their functioning under 

stress (Chaves et al. 2002; Limousin et al. 2010). Mortality processes operate on long 

timescales, with recurrent water stress likely weakening trees and pushing them to their 

physiologic limits, until they lose resilience. 

Contrarily to chronic decline, where dying trees close stomata to avoid hydraulic 

failure and down-regulate photosynthesis, thus limiting CO2 and mineral uptake, 
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“sudden death” appears to be a result of stomatal control failure in preventing xylem 

cavitation and runaway embolism – in accordance with the hydraulic-failure hypothesis 

(McDowell et al. 2008). The tree that died suddenly presented the lowest water potential 

at predawn (-3.62 MPa, fig. 5.3). It has already been established for Q. suber that leaf Ψ 

values of –3 MPa are equivalent to xylem water potentials of –2MPa at which cavitation 

commences, i.e., cavitation threshold (Tyree & Cochard 1996; Cruiziat et al. 2002; 

Otieno et al. 2007). It is possible that sudden death occurred after xylem embolism 

when leaf Ψ dropped below the critical threshold. This observation shows the difference 

in water status between chronic decline and sudden death (fig. 5.10). One suggest that 

this may be eventually caused by rapid root destruction, either caused by excess water 

during spring, root rot pathogens or a synergism between them. If abcisic acid (ABA) is 

produced in root tips or very close to it (Schachtman & Goodger 2008) their rapid 

destruction may prevent ABA root signaling to control stomatal aperture. Embolism 

disrupts the water flow through the soil-plant-atmosphere continuum and trees 

eventually dye from dehydration.  
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Figure 5.10: Variation in tree water status from spring to summer in relation to health status of 

the trees.  
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5.6.2- Preliminary data on physiologic conditions of cork oaks located in stands 

where Phytophthora cinnamomi is active 

 

This study was an exploratory approach to analyze whether there would be any 

physiologic parameter associated to P. cinnamomi infection rather to waters stress. The 

sampling size is therefore reduced, joining information previously collected with the 

occurrence of P. cinnamomi, allowing a new approach for the physiologic 

measurements already gathered on this research. 

It is thought that the main effect of P. cinnamomi attack in oak trees is 

impairment in water absorption caused by destruction of the root system, leading to tree 

water stress. For this reason, search for specific symptoms of P. cinnamomi infection is 

a challenging purpose. Studies concerning the effect of pathogen infection were only 

realized in seedling, which may not reflect the response of adult trees. Cork oak 

seedlings growing in containers do not possess sink root for water absorption, like adult 

ones. Thus, the effect of P. cinnamomi in the root system of adult trees should be rather 

different and, consequently, its effect on tree water relations. In this study, the strong 

relation between P. cinnamomi and fine-root ratio suggested their destruction by the 

pathogen; Although there was a tendency for decline in tree water status with reduction 

of fine-root ratio (fig. 5.7), tree water status was not significantly associated with P. 

cinnamomi occurrence, suggesting a more complex relation between these factors. 

Corcobado et al. (2013) also observed that fine roots were considerably lower in P. 

cinnamomi-infected than in P. cinnamomi-non-infected holm oaks and, moreover, 

declining holm oaks also showed reduced water status; however, there were no reports 

on the significance of P. cinnamomi infection in tree water status.  
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There was 1 asymptomatic tree with P. cinnamomi in the rhizosphere that 

showed reduced fine root ratio (10.43 g m
-1

) but presented good water status (pd= - 0.6 

MPa). However, photosynthetic rate (= 2.81 µmol CO2 m
-2

 s
-1

) and stomatal 

conductance (= 0.094 mol m
-2

 s
-1

) were lower to that expected for the observed water 

status (similar to values observed in declining trees, table 5.1). This may happen if 

destruction of fine roots causes ABA root signaling to control stomatal aperture despite 

favorable water status, and decrease in stomatal conductance reduces in turn 

photosynthetic rate, explaining these results. These results indicate that the effect of P. 

cinnamomi infection on cork oak trees in some cases may not be only related to 

enhancement of water stress by impairment in water absorption. Instead, the pathogen 

may induce reduction of photosynthetic rate caused by stomatal closure, triggering tree 

starvation. Studies with seedlings in controlled conditions, as well studies with other 

host and Phytophthora species, also report these 2 different reactions to infection 

(Sterne et al. 1978; Ploetz & Schaffer 1989; Robin et al. 2001; Maurel et al. 2001a, b; 

Fleischmann et al. 2002, 2005; Tapias et al. 2008a), which are reflected on the sequence 

of the symptoms: reduction in leaf  followed by stomatal closure, or on the contrary, 

stomatal closure before variation in leaf . Nevertheless, the most observed response 

was stomatal closure after drop of leaf . 

Other exception to the results was a tree with dieback symptoms, negative for P. 

cinnamomi and with high fine-root ratio (fig. 5.7). It is referred that trees suffering 

water stress increase their root/shoot ratio by leaf shed or allocating assimilated carbon 

to root growth (Larcher 1995; Dickson and Tomlinson 1996, Chaves et al. 2002). This 

tree showed the highest fine-root ratio, indicating that, as response to water stress, upper 

branches are being sacrificed and resources are being invested in root development. In 

the other studied trees, it is possible that strong infection by P. cinnamomi prevent trees 
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from reacting to water stress through fine root production. However, hosts under water 

stress – indicated by decline symptoms- are able to produce great amount of fine roots 

even in the presence of the pathogen (Blom et al. 2009). Highly susceptible sweet 

chestnuts with decline symptoms had significantly more fine roots than asymptomatic 

ones, indicating that under certain circumstances susceptible hosts suffering water stress 

can produce high root amounts in the pathogen presence. 

Most of physiologic parameters were related to both P. cinnamomi occurrence 

and water stress (indicated by low pd) however, leaf starch content was related only to 

the presence of P. cinnamomi and, peculiarly, was higher in trees affected by the 

pathogen. It was expected that partitioning of assimilated carbon would favor secondary 

metabolites, like phenolics, that play a role in the resistance mechanisms of plants 

against pathogens (Lattanzio et al. 2006). Instead, it was detected a slight increase in the 

starch reserves. This pattern was already observed in an experiment (Clemenz et al. 

2008) were infection by Phytophthora alni in Alnus glutinosa saplings increased leaf 

starch, which was thought to be related with impaired phloem transport from leaves to 

roots after cortical tissue destruction. Higher concentrations of starch was also observed 

in the leaves of low watered Olives (Olea europaea), in spite of the lowest 

photosynthetic rates, suggesting again that carbon was not translocated out of the leaves 

because these plants were sink-limited (Bacelar et al. 2006). Nevertheless, overall leaf 

starch in this study was only residual when compared to values observed in other 

studies (leaf starch content in Olives: 60.5 to 70.4 mg g
-1

, Bacelar et al. 2006; in Alnus: 

35.8 to 87.7 mg g
-1

, Clemenz et al. 2008) and with values obtained with leaves of cork 

oak seedlings ( 50 to 80 mg g
-1

, Vaz et al. 2002). Low leaf starch content were 

detected in trees with photosynthetic rate higher as 15.82 µmol CO2 m
-2

 s
-1

 and with 

good water status, indicating it was not a consequence of reduced carbon assimilation 
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nor a response to water stress. Starch is often considered as the mainform of carbon 

storage in plants. When facing water stress, there are usually is a shift in carbon flow 

from starch to sucrose and other low molecular weight compounds. Such shifts aid in 

the maintenance of turgor and increase transportable compounds, enabling osmotic 

adjustment and sustaining export during stress events (Morgan 1984; Chaves 1991, 

Dickson & Tomlinson 1996). It would be expected a reduction in starch, particularly an 

increase in the sucrose/starch ratio (Chaves & pereira 1992, Épron & Dreyer 1996). In 

this study it was not observed a relationship between starch and water stress, probably 

due to overall low content of leaf starch.  

Starch stored in roots was virtually none. Additional tests in roots with similar 

diameter from olives were performed, resulting in much more starch measured, meaning 

that the enzymatic test was able to analyze starch content in roots. It is considered that 

starch reserves in oaks are mainly stored in roots, but it is possible that stems or 

lignotubers may account for preferential starch pools (Molina & Verdaguer 1993; 

Dickson & Tomlinson 1996) during summer, and/ or photosynthetic products 

transported to roots are been used for production of structural tissues or other 

compounds like phenolics, associated with cork oak defense response P. cinnamomi 

infection (Pires et al. 2008, Horta et al. 2010). After all, starch is often considered a 

storing or "overflow" carbohydrate pool for excess carbon fixed during periods of high 

photosynthetic rates (Dickson & Tomlinson 1996).  
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5.7- CONCLUSIONS 

 

In conclusion, this study shows that, thought tree water status is similar during 

the wet season regardless of tree health status, in the dry season there are different 

physiologic responses to water stress, where trees under chronic decline have reduced 

sap flow driving force and stronger down-regulation of photosynthesis compared to 

asymptomatic trees subjected to seasonal water stress, suggesting loss of resilience.  

Moreover, chronic decline is associated to reduction in water flow and not to 

dehydration, since trees are well hydrated during the wet season and water potential 

does not drop below critical values. On the contrary, sudden death appears to be a 

consequence of tree dehydration after drop of water status to values below cavitation 

threshold, though more replicates are needed to confirm the assumption. 

Physiologic symptoms of trees with P. cinnamomi in the rhizosphere are linked 

to symptoms of water stress, mainly because the pathogen destroy fine roots and may 

cause impairment in water absorption. However, it is possible that the effect of root 

destruction may be stomatal closure instead of decrease in water status, at least in some 

cases. Moreover, though overall starch content was much reduced, trees affected by P. 

cinnamomi showed a slightly more starch in leaves which may be related to sink-

limitations. Further studies with more replicates and with seedlings in controlled 

conditions should be undergone to understand the dynamic of starch after P. cinnamomi 

infection  
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CHAPTER 6 

 

 

 

Effectiveness of cork oaks artificial mycorrhization in 

the nursery and in the field 
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6.1-ABSTRACT 

 

Application of ectomycorrhizal fungi (ECM) aim to provide conditions for 

establishment and growth of a variety of forest seedlings produced in nurseries for 

reforestation programs. Several studies in controlled conditions showed the role of 

ECM in enhancing nutrient acquisition, drought tolerance, soil aggregation in eroded 

soils and pathogen resistance of their hosts. The following question would be if ECM 

application in natural conditions is able to colonize and benefit the host. Artificial 

inoculation in sterilized conditions requires a large investment of resources and may not 

be feasible for large reforestation campaigns. On the other hand, application of ECM in 

the field could be a possibility for overall adult tree health improvement, decline 

reversion and P. cinnamomi prevention. In this study, it was tested artificial ECM 

inoculations in cork oak seedlings growing in a nursery with non-sterile soil as well 

artificial inoculations in a healthy young cork oak plantation. A commercial ECM 

product with 6 ECM strains was used in both experiments. In the nursery, seedlings 

showed high ECM root tips, but morphological and molecular analysis identified only 

Scleroderma spp. and Thelephora terrestris, strains not present in the commercial ECM 

product. Those strains are known for their capacity in colonizing forest nurseries, 

including recently fumigated ones. Artificial ECM may have reduced capacity in 

competing with well adapted strains. Other approaches, like cultural practices toward 

enhancement of natural ECM root colonization may be an interesting alternative. On the 

other hand, application of ECM in the field resulted in improvement of height growth in 

trees that showed reduced increment in the year before ECM application. Introduced 

ECM may be effective in colonizing some cork oak roots or, on the other hand; 

nutrients found in commercial product may have favored development of natural ECM. 
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The study of ECM colonization in the field is still undergoing, where the next step is to 

analyze root tips to access differences in ECM composition or abundance in relation to 

treatments. Nevertheless, these positive results are promising toward the use of ECM in 

established trees in the field. 

 

 

6.2- INTRODUCTION  

 

In the last decades, reforestation and afforestation programs have been carried 

out mainly by artificial field transplantation of container-grown seedlings produced 

from seeds in nurseries (Chirino et al 2008, Oliveira et al 2010, Pinto-Gomes et al 2001; 

Ribeiro & Teixeira 2001, Pera & Parladé 2005). Cork oaks are the second species 

produced in nurseries, corresponding to 25% of the total plants from nursery; however, 

cork oak seedling transplantation did not correspond to the expected success which 

could be attributed to inadequate techniques, seeds quality, diseases and ecological 

conditions (Pinto-Gomes et al 2001, Costa-e-Silva et al. 2001). Seedling establishment 

is a critical phase in the reforestation process and depends on the capacity of tree 

seedlings to capture resources quickly to resist pests and pathogens and to survive 

climatic stress (Perry et al., 1987; Du abeitia et al. 2004). The lack of mycorrhizal fungi 

on root systems of nursery seedlings may cause poor plant establishment and growth in 

a variety of forest, restoration, agricultural, suburban and urban landscapes, particularly 

when indigenous fungal population is low (Miller et al. 1994; Ortega et al 2004). 

Application of ectomycorrhizal (ECM) fungi aim to provide conditions for increase 

growth and vigor of seedlings under nursery conditions (Brundrett et al. 2005; Chen et 

al. 2006; Vosátka et al. 2008) and for improvement in quality, performance and survival 
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of outplanted seedlings (Oliveira et al. 2010; Domínguez et al. 2006; Quoreshi et al. 

2008; Tarango-Rivero et al. 2009). There is considerable published research in the 

world literature proving the biological, physiological and ecological significance of 

ECM to the survival, growth, development and health of many species of agricultural 

and horticultural plants, and of forest trees (Smith & Read 1996; Quarles 1999a, b; 

Marx et al. 2002). Mycorrhizae are symbioses of fungi and fine roots of plants (Smith & 

Read 1996). Mycorrhizal associations are regulated by features of the host plant and 

mycorrhizal fungus, as well as by soil conditions and environmental factors (Harley & 

Smith 1983; Mosse & Hayman 1980). 

ECM change root morphology by enhancing its bifurcation, ramification and 

enlargement, thus increasing root absorption surface; moreover, ECM mycelium may 

spread along the soil acting as extensions of root systems. These organisms form a 

linkage between plant roots and the soil by transferring inorganic nutrients to the plant 

in exchange for carbon; in this two-way movement of nutrients, up to 20% of plant 

assimilated carbon can be transferred to the fungus (Walbert 2005). 

Several studies showed the role of ECM in enhancing nutrient acquisition, 

drought tolerance, soil aggregation in eroded soils (Caravaca et al. 2002), and pathogen 

resistance of their hosts (ex: Slankis 1974; Perez-Moreno & Read 2000; Högberg & 

Högberg 2002; Read & Perez-Moreno 2003; Leake et al. 2004; Selosse et al. 2006; 

Smith & Read 1996; Azul et al. 2011). ECM root tips may also live longer and be more 

tolerant to adverse conditions (Brundrett 2009). Additionally, ECM fungi have been 

postulated as a biological option to prevent Phytophthora infection in new plantations 

and nursery stock (Blom et al 2009). ECM fungi are potential biocontrol agents, as 

several of them have shown a positive effect on growth and survival of infected plants. 

Marx & Davey (1969a, b) were the first demonstrating the protective role of ECM in 
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Pinus spp. against P. cinnamomi. Mechanisms underlying these effects may result from 

biochemical antagonism or a physical barrier of the ECM fungus over the pathogen, 

promotion of antagonistic rhizosphere microorganisms, improving plant vigor or other 

active responses by the plant (Malajczuk 1982). Thus, even strains incapable to produce 

antagonistic chemicals may have protective effect on plants against root pathogens: 

Rodrigues & Martins (2005) observed that, though the ECM Pisolithus tinctorius 

showed no in vitro antagonistic effect against P. cinnamomi, Castanea sativa seedlings 

colonized with this species showed more survival rate after P. cinnamomi inoculation 

than seedlings with no ECM application. Some studies in controlled conditions showed 

the inhibitory capacity of certain ECM fungal species in the virulence of Phytophthora 

spp. in tree species like Pinus echinata and Pinus taeda (Marx 1973; Marx & Davey 

1969a,b; Barham et al 1974), Pinus patula (Marais & Kotze 1979), Eucalyptus 

marginata (Malajczuk 1988) or Castanea sativa (Branzanti et al. 1999, Martins 2004).  

After studies in controlled conditions indicating that ECM improve overall plant 

fitness, including protective effect against root pathogens, the following question is if 

ECM application in natural conditions are able to colonize and benefit the host. Each 

ECM species has its own nutritional requirements and their persistence in ecosystems is 

dependent on the interactions with host, soil and environmental conditions (Brundrett 

1991). Factors like tree health status and management practices also affect significantly 

the composition of the ECM fungal community, including in cork oak woodlands 

(Hagerman et al. 1999; Jones et al. 2003; Kuikka et al. 2003; Saravesi et al. 2008; Azul 

et al. 2010; Blom et al. 2009; Barrico et al. 2010; Lancellotti & Franceschini 2013). 

Therefore, success in artificial ECM inoculation may be increased with a compost of 

several ECM species with different requirements, covering a wide range of edaphic 

conditions. 
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Ribeiro et al. (unpubl. data) realized a study with the intend to analyze the 

efficacy of several treatments in growth and survival of cork oak seedlings. Their 

methodology was toward plant manipulation for field reforestation. Plants, acquired in a 

nursery, were submitted to fertilization and commercial ECM application treatments 

and afterwards transplanted to the field. Their goal was to test the efficacy of each 

treatment in plant growth and survival after reforestation. In this study, we selected 

randomly a sample of cork oak seedlings to analyze ECM colonization in each 

treatment. The goal of this approach is to analyze the effectiveness in artificial ECM 

application on seedlings for posterior reforestation. Additionally, we also applied the 

same commercial ECM in an experimental cork oaks site. In this experimental site 

young adult trees are under competition between them and dendrometric measurements 

have been realized since seedlings plantation. In this approach, the objective is to 

evaluate the effect of mycorrhizal inoculation in the growth of young adult cork oaks 

under competition effect. Overall, we want to test if the use of ECM inoculum before or 

after reforestation is an asset for cork oak forest producers and a good management 

practice for a general improve in tree health status, eventually protecting them against 

P. cinnamomi. 
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6.3- MATERIAL AND METHODS 

 

6.3.1- EXPERIMENT 1: 

 

6.3.1.1- Plant Treatments 

 

Two years old cork oak seedlings were acquired in a nursery and planted on 

containers with 10 L capacity and filled with non-sterilized soil. Substrate was obtained 

from a cork oak montado in a stand selected for further seedlings transplantation.  

 

Four treatments where applied:  

 

C- Control (no application of additives);  

F: Fertilization treatment,  

FM: Fertilization + ectomycorrhizal fungi, 

 FA: Fertilization + amino acids 

FAM: Fertilization + amino acids + ectomycorrhizal fungi. 

 

Fertilization: 

 

 In all treatments, except control (C), it was applied 8.3 mg N, 3.7 mg P2O5, 16.0 mg 

K2O, 8.1 mg CaO, 4 mg MgO, 7.8 mg SO3-, 0.005 mg B, 0.004mg Cu, 0.001 mg Fe, 

0.02 mg Mn and 0.001 mg Zn in each application per plant.  
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Amino acids: 

 

 For FA and FAM each plant was subjected in each application to a supply of 0.19g of 

amino acids and 0.47g of vegetable organic matter.  

 

Ectomycorrhizal fungi: 

 

 In FM and FAM it was applied the commercial mixture ECTOVIT (Symbiom Ltd.). 

The mixture is compound by 4 strains of mycorrhizal fungi on a liquid medium and 2 

strains of mycorrhizal fungi on a peat-based carrier with ingredients supporting the 

development of mycorrhiza (humates, ground minerals, extracts from sea organisms), 

naturally degradable granules of a water-retaining gel. The ECM species are 

Cenococcum geophilum, Hebeloma sinapizans, H. crustiliforme, Pisolithus tinctorius, 

Amanita rubescens and Tricholoma acerbum.  

 

Plants were distributed randomly in a greenhouse and watered every five days according 

to their needs. During the experiment 18 applications, dissolved in 0.5 L water, were 

made every 10 days.  

 

 

6.3.1.2- Root analyses 

 

After 18 months, a subsample of about 10g of fine roots was removed in 5 plants 

per treatment from four distal points of the containers, in a total of 25 plants. Roots 

were wrapped in wet newspaper and sealed in plastic bags to maintain humidity and 
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stored at 4°C for up to 2 weeks until being processed. Soil particles adhering to roots 

were removed with water and fine forceps under a stereomicroscope. Roots were 

digitalized and the degree of mycorrhizal formation was expressed as the percentage of 

colonized root tips. ECM roots samples were observed under a dissecting microscope 

using a black background and lamps of daylight quality and categorized into 

morphotypes according to macroscopic morphology (Goodman et al. 1996): color and 

texture of the mycorrhizal tips, shape of unrumified tips, form and abundance of 

emanating hyphae, and the presence and type of rhizomorphs. Microscopic observation 

of the mantle peels, rhizomorphs and emanating hyphae was realized in a few samples. 

Samples of each ECM morphotypes were stored at -20ºC for posterior molecular 

analyses. 

 

 

6.3.1.3- Classification of the macroscopic ectomycorrhizal characters: 

 

A. Branching type (ramification): Simple, pinnate, irregular, dichotomous, coralloid 

or tubercle-like 

B. Mantle surface texture: Smooth, reticulate, grainy, spiny, cottony or woolly. 

C. Mantle luster: matte, shiny, reflective, stringy, short spiny, long spiny 

D. Shape of unramified ends: Straight, bent, tortuous or beaded 

E. Emanating hyphae: Frequency: none, rare, common;  

F. Rhizomorphs:  

a) Attachment to the tips: restricted point, restricted, angled or fanned;  

b) Shape: filamentous, smooth or hairy; 

c)  Frequency: none, rare, common 
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6.3.1.4- Molecular identification of the ectomycorrhizal tips 

 

Molecular characterization was carried out by sequencing fragments of the 

nuclear ribosomal DNA region of representative ECM root tips.  

DNA was extracted following Graham et al. (1994) protocol for fungal genomic 

DNA extraction with slightly modifications adapted to our samples and laboratory 

conditions, described above: 

 

Protocol for fungal genomic DNA extraction (adapted from Graham et al. 1994).  

* Adjustments from the original protocol  

 

A) Roots tips samples (stored at -20ºC) were crushed and grinded with a pestle for 1.5 ml 

microcentrifuge tubes where 1ml extraction buffer (2% wt/vol CTAB, 100 mM tris-

HCl, 1.4 M NaCl 20 mM EDTA) was added. 

* ECM root tips samples are very small (about 1 mm long) and lightweight (mg?) and 

maceration with liquid nitrogen was not possible. Samples were imediately crushed 

while still frozen and then completely grinded after addiction of the extraction buffer. 

Although samples were less than 1 g, 1 ml of extraction buffer was added for 

convenience in the following collection phases. 

 

B) The blend was mixed by gentle inversion and incubated at 55ºC for 20 min.  

 

C) After 5min centrifugation at 15,000 x g the supernatant was collected in a new 

microcentrifuge tube.  
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D) 1 ml of chloroform: isoamyl alcohol (24:1) was added and mixed by gentle inversion 

for 2 min  

* Although the supernatant was always inferior to 1 ml (about 0.9 ml) the nucleic acid 

was purified with a standard 1 ml of the reagent (instead of 1 volume). 

 

E) After centrifugation at 15,000 x g for 20 s, 640 µl of the upper aqueous phase was 

collected carefully to a 2 ml microcentrifuge tube.  

* It was decided to collect only 640 µl in order to avoid possible contamination by the 

reagent when collecting the upper aqueous phase. Moreover, it is the maximum amount 

possible to use in one individual reaction according to equipment and material 

limitations. 

 

F) 64 µl (1/10 vol) of ammonium acetate and 1280 µl (2 vol) of ice-cold absolute ethanol 

were added and mixed by gentle inversion. Samples were stored at -20ºC for 60 min to 

precipitate genomic DNA. 

* The reaction had the volume of 1984 µl : [640 µl sample + (64 µl + 1280 µl) 

reagents], suitable for a 2 ml microcentrifuge tube. 

 

G) Samples were centrifugated at 15,000 x g for 1 min and the supernatant discarded. 

 

H) 1 ml of 70% ethanol was added to wash the pellet by inversion, centrifuged at 15,000 x 

g for 1 min and the supernatant discarded. 

 

 

I) Subheading 8 was repeated. 
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J) The pellet was dried in a DNA desiccator for 15 min. 

 

K) DNA was eluted in 30 µl of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) 

* Elution in a volume inferior to 200 µl was used in order to yield more DNA 

concentration. 

 

After elution, DNA samples were analyzed in a NanoDrop 2000c UV-Vis 

Spectrophotometer for nucleic acid concentration and purity measurements. 

 

 

PCR amplification protocol 

 

PCR amplification conditions were followed from Gardes & Bruns (1993). The authors 

designed two primers that in combination preferentially amplify the ITS (Internal 

Transcribed Spacer) region of the basidiomycetes rDNA. The basidiomycete primer 

ITS4-B, when paired with the fungal specific primer ITS1-F, efficiently amplified DNA 

from all basidiomycetes; although some plant DNA (including Quercus sp.) may 

eventually be amplified, under conditions where both plant and fungal DNA are present 

fungal DNA is amplified to the apparent exclusion of plant DNA (Gardes & Bruns 

1993). 

 

Primers sequence: 

 

ITS1-F: CTT GGT CAT TTA GAG GAA GTA A 

ITS4-B: CAG GAG ACT TGT ACA CGG TCC AG 
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Reaction: 

 

Amplification was carried out in 50 µl reactions with Supreme NZYTaq Green Master 

Mix (50 mM Tris-HCl, pH 9.0, 50 mM NaCl, 2.5 mM MgCl2, 0.2 mM each dATP, 

dCTP, dGTP, dTTP, 5 U Taq DNA polymerase). 

Reaction mixture combined the following components, for 50 µl: 

- 25 µl Supreme NZYTaq 2× Green Master Mix  

- 0.2 µM each primer 

- 1 µl template DNA 

- Nuclease-free water up to 50 µl 

A negative control was added in each set of reactions. Template DNA was replaced by 1 

µl of nuclease-free water in order to test contamination of reagents and reaction 

mixtures. The thermal cycling program was run in a programmable heat block (marca).  

 

Amplification: 

 

1) initial denaturation step of 94ºC for 120 s 

2)  35 amplification cycles:  

2A) first 13 cycles: 

2A1) melting temperature at 95ºC for 35 s 

2A2) annealing at 55ºC for 55 s 

2A3) extension at 72ºC FOR 45 s 

2B) next 14-26 cycles:  

2B1) melting temperature at 95ºC for 35 s 

2B2) annealing at 55ºC for 55 s 
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2B3) extension at 72ºC FOR 120 s 

2C) next 14-26 cycles:  

2C1) melting temperature at 95ºC for 35 s 

2C2) annealing at 55ºC for 55 s 

2C3) extension at 72ºC FOR 180 s 

 

3) Additional incubation for 10 min at 72ºC.  

 

 

Agarose gel electrophoresis of diagnostic PCR products 

 

5 µl of each PCR reaction was loaded into a 1% (wt/vol) agarose gel in 1x Tris-acetate-

EDTA (TAE) buffer. Gels were stained by immersion in an ethidium bromide solution 

for 10 min and gel images digitally recorded under UV light (EDAS 120, Kodak Digital 

Science). Fragment sizes were determined by comparison with a 1 kp molecular weight 

standard (Fischer Biotech)  

 

 

DNA Sequencing of the amplified products  

 

PCR products were purified using QIAquick Gel PCR purification kit (QIAGEN, 

Chatsworth, CA, USA) according to the manufacturer’s instructions and a sample of 8 

fragments were sequenced using the ITS1-F primer in Macrogen Standard Sequencing 

Service (Amsterdam, The Netherlands). DNA sequences of the ECM samples analyzed 

were compared with the sequences in the National Center of Biotechnology Information 
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nucleotide databases (Genbank; Zhang et al. 2000, Morgulis et al. 2008; using the 

BLASTN search: http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

 

 

6.3.1.5- Statistical analyses 

 

Statistical analyses were made using the Systat v.13.1 software package. 

Two-way ANOVA was used to test significance of each ECM species and treatment in 

root tip colonization variation. Significant differences between treatments means were 

evaluated with Tukey’s HSD tests with P<0.05. Before applying ANOVA tests, data 

were tested for normality by using Kolmogorov-Smirnov D test at the significance level 

of 0.05.  

 

 

6.3.2- EXPERIMENT 2: 

 

6.3.2.1- Study area 

 

The study took place, at the “Herdade da Mitra” experimental stand (38º32’N, 8º01’W, 

243m a.s.l.) located near Évora, Portugal between September 2012 and August 2013. 

The experimental stand consists on a cork oak forest plantation with 5 ha comprising 16 

years old trees located distantly 1 m from each other. Access to the stand is restricted to 

livestock and shrub management is periodically realized by cutting practices with no 

soil tillage. The soil is a very shallow (30 cm deep) sandy Cambisol (FAO, 1988) 

overlying a fractured gneiss rock (David et al. 2004). The trees selected to the study 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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were distributed homogeneously along 8 lines parallel to each other, distantly 3 m from 

each other. The selected study area only comprised young cork oaks with the same age. 

 

 

6.3.2.2- Experimental design  

 

40 trees were selected for this experiment, distant from each other by about 4 m. 

Between each selected tree there was 2 to 3 trees not considered in this study, therefore 

all the selected trees were separated from each other by other trees, reducing the 

possibility of root contact between selected trees. On September 2012, after first autumn 

rains, dendrometric measurements were realized: tree high, canopy projection in each 

quadrant (4 parameters), diameter of the trunk at the base (2 perpendicular 

measurements) and perimeter at 1 m from the base. Application of commercial mixture 

ECTOVIT (Symbiom Ltd.) was realized in 20 of the selected trees, alternating ECM 

application between treated trees and control trees. In each treated tree, ECM 

inoculation was made through 8 soil injections distant 50 cm of the base trunk and 20 

cm deep (after removing soil litter) each with 60 ml of the product, with a 

microinjection machine (fig. 6.1). 11 months after, in August, dendrometric 

measurements were realized again and tree increment was calculated for each 

parameter. 
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Figure 6.1: Study site at Herdade da Mitra, Évora 

  

A: Tree high measurements. B: Filling the microinjection machine with the 
ECM product 

  

C, D: Injecting ECM product in the tree rhizosphere 
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6.3.2.3- Statistical analyses 

 

Statistical analyses were made using the Systat v.13.1 software package. 

Absolute and relative increments were calculated for each dendrometric parameter. 

Absolute increment is the difference between the two measurements realized for each 

parameter (in September 2012 and August 2013) and refers to the total increase during 

the study period. Relative increment is the absolute increment divided by the initial 

value of the parameter and refers to the percentage of increase in relation to initial tree 

dimensions. Relative increment was calculated for the study period and also for the 

formerly period (between September 2011 and September 2012).  

To compare differential absolute and relative increment during the study period 

between control and treated trees, it was used the two-sample T-test with separate 

variance for each dendrometric parameter. To test if the effect of the treatment was 

related to the relative increment in the previous year, it was applied a general linear 

model, to estimate a multivariate general linear model with two independent factors, a 

linear factor (relative increment in the previous period) and a factorial one (treatment). 

 

 

6.4- RESULTS 

 

6.4.1- EXPERIMENT 1: 

 

6.4.1.1- Description and identification of the ectomycorrhizal morphotypes 

 

Two main morphotype of ECM were observed in the root samples and vestigial old 
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ECM (shrank, dark mantle), but about 99% of the total ECM belonged to only 2 

morphotypes.  PCR was realized with DNA extracted from 40 ECM samples, resulting 

in three DNA fragments. 8 randomly selected DNA fragments were sequenced. 

 

Morphotype I: 

 

 Macroscopic features: 

 

 ECM tips not branched or monopodial pinnate with unramified ends straight or 

sinuous. Mantle surface dark-yellow, smooth. No rhizomorphs and emanating hyphae 

observed (fig. 6.2). 

 

Molecular analyses:  

 

PCR amplification using ITS1-F and ITS4-B primers resulted in a DNA fragment with 

793 bp. DNA sequencing was strongly aligned (identical sequence superior to 95%) 

with Thelephora terrestris (fig. 6.2, fig. 6.6).  

 

 
 
Figure 6.2: Morphological features of morphotype I. DNA fragment matched Thelephora 

terrestris. 
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Morphotype II: 

 

Macroscopic features:  

 

ECM tips not branched, monopodial pinnate irregular or pyramidal with tortuous or 

sinuous unramified ends; mantle surface yellow-white, shiny; frequent rhizomorphs 

connected to the mantle at distinct points (fig. 6.3). Anatomical features of a few 

samples showed the outer mantle surface with ring-like arrangement and inflated 

hyphae and highly differentiated rhizomorph (fig. 6.4, 6.5). 

 

Molecular analyses: 

 

 PCR amplification using ITS1-F and ITS4-B primers resulted in two DNA fragment 

with 869 bp and 805 bp. DNA sequencing of 4 random samples of the larger fragment 

strongly aligned (identical sequences superior to 95%) on Genbank with Scleroderma 

cepa, S. verrucosum or S. aerolatum. Some were strongly aligned with more than one 

species (table 6.1). The smaller DNA fragment strongly aligned with S. citrinum (fig. 

6.6). 
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Figure 6.3: Morphological features of morphotype II: Ectomycorrhizal root tips. DNA 

fragment aligned with Scleroderma sp. 

 

 

Figure 6.4: Anatomical features of morphotype II, Scleroderma sp. : plectenchymatous 

mantle with ring like arrangement and inflated hyphae  
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Figure 6.5: Anatomical features of morphotype II, Scleroderma sp.: branching of a highly 

differentiated rhizomorphs with thick hyphae. 

  

 

Figure 6.6: Difference between DNA fragments of morphotype I and II obtained by PCR 

using ITS1-F and ITS4-B primers. The fragments were separated on a 1 % agarose TAE gel 

Lane 1: 1 kb ladder as marker 

Lane 2, 5, 6, 7, 8: 869 bp DNA fragment obtained from morphotype II 

Lane 3, 4, 10: 793 bp DNA fragment obtained from morphotype I. 

Lane 11: Negative control 
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6.4.1.2- Effect of the treatments on ectomycorrhizal root tip colonization  

 

The percentage of seedlings ECM colonization varied from 14% to 86% and was 

on average 50 ± 23 %. Root tips were more colonized by morphotype II (Anova: F(40,1): 

11.43, p = 0.01; morphotype I colonization rate: 14 ± 17 %; morphotype II colonization 

rate: 37 ± 29 %, fig. 6.7); treatment was not significantly related with colonization rate 

(Anova: F(40,4): 0.803, p = 0.53; fig. 6.8) and there was no interaction between treatment 

and morphotype (Anova: F(40,4): 2.22, p = 0.11). 

 

 

Figure 6.7: Example of digitalized sample roots from FA treatment with ectomycorrhizae 

selected for molecular analyses.  

 

 

Table 6.1: Total root tips counted in each treatment, and quantity of root tips colonized by each 

morphotypes. 

 

Treatment Total root tips (n.) Morphotype I tips (n.) Morphotype II tips (n.) 

TC 1229 ± 817 486 ± 857 67 ± 105 

TF 1597 ± 927 76 ± 111 242 ± 186 

TFM 1783 ± 788 69 ± 117 413 ± 471 

TFA 2798 ± 1706 40 ± 89 983 ± 552 

TFAM 1811 ± 1284 327 ± 458 274 ± 423 
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Figure 6.8: Relative ectomycorrhizal fungi (ECM) root tip colonization according to treatment. C: 

control; F: fertilizers; FM: fertilizers and ECM; FA: fertilizers and amino-acids; FAM: fertilizers, 

amino-acids and ECM.  

 

 

6.4.2- Experiment 2 

 

In general trees grew less during the study period than in the period before, and 

total and relative tree increment occurred between September 2012 and August 2013 

was not related to ECM application (p >0.05 in all the tree growth parameters, table 

6.2). However, relative increment in tree high during the study period was slightly but 

significantly higher in trees that showed relatively less increment in the previous year 

(GLM: F(37,2) = 5.12, p = 0.03). All the other parameters were not affected by treatment 

(fig. 6.9).  
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Table 6.2: Total and relative increment of cork oak trees in the study field at Herdade da Mitra, 

Évora, between September 2012 and August 2013 

 

Dendrometric  

parameter 

Total increment 

(average ± s.d.) 

 

Relative increment  

(average ± s.d.) 

 

Tree high  19.49 ± 22.42 cm 3.65 ± 3.42 % 

Crown horizontal projection 76.75 ± 39.53 cm
2
 12.91 ± 35.06 % 

Perimeter at the trunk base  18.84 ± 16.40 cm 4.75 ± 4.84 % 

Perimeter 1 m from the base 17.98 ± 7.72 cm 6.42 ± 3.51 % 

 

 

 

 

Figure 6.9: Difference in the relative increase in height of young cork oaks (Quercus suber) 
between the year prior to the study (2011-2012) and the year after artificial ectomycorrhizal 
application (2012-2013), in the study field at Herdade da Mitra, Évora. 
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6.5- DISCUSSION 

 

6.5.1- Experiment 1: 

 

It was clear in these results that ECM application (in treatments FM and FAM) did 

not influence ECM colonization. The two dominant morphotypes belong to other 

species than the strains from the commercial mixture and, moreover, qualitative and 

quantitative colonization was not related to ECM treatments. It was observed more 

morphotype II infection, but it may be a result of its tendency to enhance root tips 

ramification and enlargement in relation to morphotype I. In general, root colonization 

rate was as high as in some artificial inoculations in controlled conditions (Ortega et al. 

2004, Oliveira et al 2010, Sousa et al. 2012), suggesting redundancy of ECM 

applications in natural conditions. 

Nursery inoculations of forest tree seedlings with ECM fungi are usually carried out 

with few fungal species in sterilized conditions. However, this study shows that 

artificial inoculation in non-sterilized substrate may not be effective in root colonization 

against native species. Large variation in response to inoculation arises from factors 

such as the degree of host–fungus compatibility, mycorrhizal dependency of the host, 

fungal effectiveness in relation to biotic and abiotic site conditions, and the abundance 

and effectiveness of indigenous fungi (Ortega et al. 2004). In this study it was selected a 

commercial mixture specific for oak trees, thus compatible with the host and with 

species tolerant to diverse soil conditions. For example, the applied ECM C. geophilum 

is known for is wide hosts and habitat range and has been suggested to provide isolate-

dependent drought protection to fine roots (Jany et al. 2002). This nearly ubiquitous and 

often abundant species was systematically observed in fine roots of adult cork oaks 
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(Azul 2002). Being the dominant ECM species in oak woodlands (Dickie et al. 2005), 

has strong interspecific competitive capacity during colonization processes (Villeneuve 

et al. 1991) and is not affected by application of fertilizers (Oliveira et al. 2007). In a 

sterilized substrate, C. geophilum inoculation resulted in about 20 to 40% root tips of 

holm oaks seedlings colonized by this species (Oliveira et al. 2010); Other applied ECM 

species, P. tinctorius, has a worldwide geographic distribution and is found in forests, 

pecan orchards, urban settings and on adverse sites, such as severely eroded soils and 

mined lands; it occurs in both cold and warm climates on a broad range of tree hosts and 

is one of the best examples of ecological adaptation (Marx 1977, Marx et al. 2002), 

maintaining its viability after application of fertilizers (Hatchell et al. 1985). 

Nevertheless, none of C. geophilum and P. tinctorius (neither the other species) were 

able to colonize the analyzed root tips in this experiment. Moreover, seedlings 

inoculated with ECM product (FM and FAM treatments), which includes not only the 

ECM inoculum but also ingredients supporting the development of mycorrhizas, did not 

show the highest colonization rate and half of the seedlings had less than 50% colonized 

root tips.  

It is usually considered that high amounts of P and N may change ECM diversity, 

composition and abundance (Björkman 1942, Slankis 1974, Buscot et al. 2000, Peter et 

al. 2001, Lilleskov et al. 2002). Nutrient demand and response to nutrient supplements 

vary among fungi, thus fertilization can have different effects on ECM establishment, 

enhancing or inhibiting root colonization (Molina & Chamard 1983, Castellano & 

Molina 1989, Rincón et al., 2007, Liu et al. 2008, Vaario et al. 2009). Moreover, in 

natural soils the effect of inorganic nutrients on ECM formation is complex, presumably 

due to the effect of soil microorganisms or other plant competition for mineral nutrients 

(Slankis 1974). Addiction of fertilizers in this study was towards Q. suber requirements 
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and the applied quantities did not affect ECM composition and abundance. Other 

studies also reported no effect of fertilization in ECM colonization (Conjeaud et al. 

1996, Hawley 2006), including C. geophilum colonization of holm oaks roots (Oliveira 

et al. 2007). Application of about 10-fold more N in a study with oak tended to reduce 

ECM abundance or colonization, but this effect was more significant in controlled 

experiments instead of seedlings growing in the natural conditions (Newton & Pigott 

1991). 

Soil substrate was obtained in a traditional but degraded montado which is expected 

to have low ECM inoculum due to lack of hosts. However, the species observed in the 

treatment, Scleroderma spp. and T. terrestris, are known for they capacity in 

contaminating plant nurseries since cultural procedures used to produce seedlings in 

bare-root or container nurseries create environmental conditions that select naturally 

occurring ECM fungi adapted to these conditions; producing mushrooms or puffballs 

that release many spores that are wind disseminated to nursery soils (Marx et al. 2002).  

T. terrestris is considered an early stage fungus with medium-distance exploration 

(Last et al. 1987, Agerer, 2001), appears to naturally dominate the roots of most pines, 

oaks and spruce grown in nursery soil and containers (Marx et al. 1982, 1984a) and is 

considered the first symbiotic species colonizing fumigated nursery soils (Marx & 

Bryan 1969). Researchers involved in ECM inoculation programs undoubtedly have 

cursed this vigorously growing pioneer species because it easily outcompetes with their 

inoculant ECM species (Colpaert 1999). They benefit to the host is not so evident 

comparing with other species like P. tinctorius, as it is not efficient in nutrient uptake 

when external nutrient concentrations are low but this mycobiont is well adapted to the 

environmental conditions in modern nurseries and there is evidence that it confers some 

advantages to its young host plants in these nurseries (Colpaert et al. 1999), improving 
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survival and growth of some transplanted seedlings (Tomazello & Krügner 1982), 

particularly under fertilization treatments (Sousa et al. 2012). 

Scleroderma is a common and widespread gasteromycete genus; most of the 

species are pioneer in colonizing bare roots and are capable to colonize both highly 

stressed sites (Jeffries 1999; Marx et al. 2002) and nutrient rich soils (Newton & Pigott 

1991). ECM producing abundant rhizomorphs, such as Scleroderma spp., may increase 

plant tolerance to drought (Duddridge et al. 1980, Ortega et al. 2010). The genus 

produces ECM with highly differentiated rhizomorphs, which have been shown to 

facilitate water transport over ecologically significant distances (Duddridge et al. 1980, 

Foster 1981, Brownlee et al. 1983, Read and Boyd 1986, Cairney 1992). There are 

reports of overall improvement of physiologic status and /or biomass of several host 

species after Scleroderma spp. application (Ortega et al 2004, Du abeitia et al. 2004a, 

Caravaca et al. 2005, Chen et al. 2006). Moreover, some Scleroderma spp. inhibit some 

root pathogens like Phytophthora spp. (Marx 1973). S. citrinum, S. verrucosum and S. 

aerolatum are very common species; on the other hand, S. cepa are occasionally found 

under oaks on sandy soil (Storey 2009). The observed dominant species are known to 

contaminate forest nurseries and their presences are not associated to the use of natural 

soils in nurseries, since they occur even when using sterile substrate, particularly in 

large-scale production of seedlings.  

One explanation for the inefficacy of ECM application could be the unviability of 

ECM spores and mycelium caused by eventual maintenance of the product in 

inappropriate conditions, like adverse temperature conditions. However, several 

applications from several ECM packages were made, reducing the probability that all 

the applications were made with unviable ECM.  
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Historically, the most widely used natural inoculum is obtained from not sterilized 

forest soils, despite of its disadvantages (Marx et al. 2002). Established nurseries often 

do not inoculate at all, relying on natural soil populations, and inoculum material is 

usually collected from these sites (ex: http://www.nzffa.org.nz). Although in other 

experiments it was observed favorable results with artificial inoculation in non-sterile 

soils (ex: Baum et al. 2002, Chen et al. 2006, Sousa et al. 2012), this study suggests that 

ECM application in large-scale may be an inefficient procedure because of 

contaminations by ECM producing large amount of spores. On the other hand, substrate 

sterilization is resource consuming and may not prevent further contaminations in the 

nurseries. Therefore, it should be evaluate the possible economic advantage of ECM 

inoculation in forest nurseries. ECM inoculation cannot become a routine practice 

unless viable and inexpensive inoculum is available (Ortega et al. 2004) and root 

colonization is efficient. Artificial inoculation in sterilized conditions requires several 

procedures that are associated to a large investment of resources (Menkis et al. 2007) 

and may not be feasible for large reforestation campaigns. An alternative would be to 

explore existing natural mycorrhizae in forest nurseries by selecting a cultivation system 

that may yield seedling material with a high extent of ECMs. The cultural procedures 

used to produce seedlings in nurseries could be oriented to create environmental 

conditions that select naturally occurring ECM adapted to these conditions, like 

substrate selection (Chen et al. 2006) and appropriate cultivation systems (Menkis et al. 

2011). These authors demonstrated that selection of proper cultivation system might 

result in similar or higher mycorrhization and survival rates of outplanted seedlings than 

achieved by expensive and laborious artificial mycorrhization. 

 

 

http://www.nzffa.org.nz/
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6.5.2- Experiment 2: 

 

The same ECM product used in this study was already tested on adult cork oaks 

in another study (symbio docs): the product was injected into the soil, together with 

natural slow release fertilizer and, in general, cork oaks health status improved 

significantly. However, it was not reported if ECM effectively colonized fine-roots and 

if oaks were favored by fertilizers, ECM or both. In contrast, all the trees from this 

present study were in good sanitary conditions regardless of intra-competition and the 

purpose was to test differences in tree increment.  

All trees in the study area have the same age but show different size, due to their 

own intrinsic conditions but also due to environmental conditions, for example, access 

to nutrient and water resources that may be limited by neighboring dominant trees. This 

study showed that ECM application was not effective in improving tree size on trees 

that previously showed the highest relative increments, but favored trees with less 

relative increment. It is referred that beneficial effects of ECM fungi are likely to be 

most pronounced on poor fertility planting sites under harsh environmental conditions 

(Smith & Read 1996). Cork oaks with less access to nutrient and water supply, as a 

result of tree competition or other environmental cause, could be favored by an increase, 

or a shift, in ECM colonization, increasing by this way nutrient and water availability. 

Mycorrhiza-mediated nutrient uptake patterns may be important mechanisms in 

competition between plants (Aerts 2002). Interestingly, ECM application had significant 

effect only in tree vertical growth and not in horizontal growth. Upper part of the 

canopy is usually subjected to the lowest tree water potential, as a result of the greater 

effect of the gravity (Larcher 1995) and hydraulic architecture of the tree (Tyree & 

Sperry 1989). As trees grow taller, a larger soil-to-leaf water potential gradient is 
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required to overcome the effect of gravity and the increased hydraulic resistance of a 

longer flow pathway; maintenance of favorable water status by stomatal closure might 

progressively slow height growth by reducing photosynthetic carbon gain (hydraulic 

limitation hypothesis, Ryan & Yoder 1997). Moreover, in nutrient poor sites, trees tend 

to have low rates of photosynthesis and consequently narrower tracheids, thus less 

permeable xylem which increases hydraulic resistance (Pothier et al. 1989b, Schulze et 

al. 1994, Ryan & Yoder 1997). Vertical growth is thus limited by water and nutrient 

supply: trees grow tall when resources are abundant, stresses are minor, and competition 

for light places a premium on height growth (Koch et al. 2004). Consequently, if tree 

growth in height is limited by nutrient and water availability, one will likely be favored 

by symbioses with ECM. It is known that ECM favors host nutrient acquisition and 

mycorrhizal plants often have higher nutrient contents than non-mycorrhizal plants 

especially when grown in soils with low nutrient availability (Simard et al. 2002). In 

relation to water uptake by adult trees, ECM may not be their major pathway, but may 

play a critical role at times of stress (Lehto & Zwiazek 2011). Actually, an experiment 

with mature live oak trees (Quercus virginiana) estimated to be between 150 and 250 

years old, successfully introduced ECM in stressed environment increased significantly 

root absorbing potential of the roots (Marx et al. 1997). In other study, ECM growth 

stimulation was more marked on years with a dry summer (Garbaye & Churin 1997). 

These reasons may explain why vertical growth was favored by ECM instead of 

horizontal growth (trunk width and canopy projection). 

Most of the research related to management of ECM in forestry are focused on 

cultural practices in nurseries to support ECM colonization of the seedlings and on their 

growth and survival after transplantation to the field; in several of those studies, 

artificial mycorrhizal seedlings were able to maintain the symbiotic association with 
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inoculated species in the field for about two years (Beckjord & McIntosh 1984, 

Castellano & Molina 1989, Marx et al. 1985, 1991, Thomson et al. 1996, Parladé et al. 

1999, Selosse et al. 2000, Battista et al. 2002, Núñez et al. 2006; Duponnois et al. 2007, 

Oliveira et al. 2010) suggesting that artificial ECM inoculations may be effective when 

realized previously to field transplantation, particularly in areas with low native ECM 

inoculum. However, in other studies transplanted ectomycorrhizal seedlings showed 

limited survival indicating that fungal community formation in root systems was 

governed mainly by environmental factors (Loopstra et al. 1988, Maestre et al. 2002, 

Gilman 2001, Menkis et al. 2007). Few artificial mycorrhization experiments were 

performed after plants transplantation to the field or with established trees. In some 

studies, ECM were applied during seedlings outplanting and it was reported successful 

root colonization, at least in the first year (Garbaye & Churin 1996, Baum et al. 2002, 

Du abeitia et al. 2004b). Problems that may arise with ECM application in the field are 

competition with native ECM or environmental influences, such as drought periods in 

the summer that can reduce the spreading of the inoculated strain and cause a lack of 

inoculation effects (Feil et al. 1988, Nilsen et al. 1998, Baum et al. 2002). In this study, 

ECM application was realized in an established cork oak plantation that was likely to 

have appropriate ECM species. Enhancement in tree height, observed in trees with 

previous low relative increment, indirectly indicates the success in artificial ECM 

inoculation. It may enhance root ECM colonization by the input in ECM inoculum or by 

favoring natural ECM with ingredients supporting the development of mycorrhiza. 

However, it is needed to analyze ECM colonization of root samples in the study trees 

for a better comprehension of the mechanisms underlying the positive effect of this 

artificial inoculation.  
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6.6 - CONCLUSIONS  

 

Artificial ECM application was not successful in the nursery experiment with 

non-sterile conditions but it was beneficial in field experiment. In the latter, further 

studies are needed to understand if artificial ECM application was effective in root 

colonization or, on the other hand, only enhanced natural ECM colonization. Tree 

seedlings are usually considered to perform better in reforestation when mycorrhized, 

but this is associated with a large investment of resources that may not be effective in 

large-scale production if nurseries are prone to be contaminated by ECM producing 

large amount of spores. Moreover, growth and survival of outplanted seedlings is not 

consistently improved by ECM application. Cultural practices oriented in enhancing 

natural ECM colonization in nurseries appear to be an alternative to artificial 

inoculation. Application of artificial ECM in the field after reforestation may also be an 

interesting alternative, though it requires more studies. The field experiment is still 

undergoing and surveys are already schedule for posterior examination of ECM 

abundance and diversity in cork oak root tips according to treatments. 
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7 - FINAL CONCLUSIONS AND GENERAL PERSPECTIVES 

 

In this work it was performed an extensive analysis of former studies,  

highlighting that cork and holm oak decline is a phenomenon without a single cause, 

resulting in complexes interactions between abiotic and biotic factors, acting in 

synergism and in long-term, and reducing trees resilience until trees are no longer able 

to recover from imposed stress. For accurate studies concerning the association between 

P. cinnamomi and cork and holm oak decline, a reliable method for pathogen diagnose 

is imperative. In this study it was demonstrated that, contrary to what is widely 

accepted, limitations in baiting-selective method are more related with contaminations 

by other fast-growing organisms instead of sampling size and, on the contrary, 

limitations in PCR-based method are more related to sampling size and less to 

contaminations by soil inhibitors. All procedures from the first method can be optimized 

to prevent undesirable contaminations until one can consider that negative results 

confidently indicate lack of inoculum in the samples. Moreover, baiting-selective 

methods are not constraining by the amount of soil sample to be analyzed, though it is 

in general a time consuming method, particularly if using larger soil samples. 

Nevertheless, analyzes with reduced sampling size are biased to P. cinnamomi detection 

only from soils with high inoculum amount. On the other hand, the development of 

DNA purification techniques allowed, in theory, that PCR-based approaches could be 

applied in soil samples. However, failure in detecting the pathogen from naturally 

infested soil samples associated to positive detection from artificially infested soils or, 

in the case of this study, positive results with P. cinnamomi DNA added to PCR 

reactions, strongly suggests that the main obstacle found in these methods is the reduced 



 

156 
 

amount of target DNA in the soil combined with extremely low amounts of substrate 

used for DNA extraction. 

This research showed that the two unspecific decline symptoms, also reported in 

trees affected by P. cinnamomi, are linked to different tree water status. In field 

measurements it was underlined that sapflow is reduced in chronic decline and, 

consequently, reduces nutrient absorption and photosynthesis. On the other hand, if 

sapflow is not reduced and trees are not able to absorb water, xylem water potential may 

fall until vessels embolism. The last symptom has been extensively reported to occur in 

areas were P. cinnamomi is active (but not exclusively), particularly in young holm 

oaks, suggesting a straight association with root rot, differences in the root system 

related to tree age – for example, reduced root depth - and specific physiologic 

responses to water stress – it is referred that holm oaks are more drought tolerant than 

cork oaks, allowing a lower whole-tree hydraulic conductance and midday leaf water 

potential, however, their xylem vulnerability to embolism is similar to cork oaks (David 

et al. 2007, Pinto et al. 2012). Conditions associated to sudden death, for example, a 

rapid destruction of roots associated to a synergism between P. cinnamomi and soil 

waterlogging, limitations in root depth and water potentials working near the limits of 

safety margins, should be explore for a better understanding of the phenomenon.  

This study also showed that trees under chronic decline are able to maintain 

appropriated water status with favorable environmental conditions, like during the rainy 

season. Former studies related to physiologic and biochemical alterations during 

seasons were only applied in asymptomatic trees, but further studies focused on 

declining trees will allow a better comprehension of the physiologic meaning of chronic 

decline and, moreover, if trees are able to recover when not restricted by soil water. This 
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knowledge could open opportunities to identify possible mechanisms for health status 

improvement and decline reversion.  

Other important result from this study was the association between high midday 

leaf water potential and chronic decline. Studies with seedlings did not report this 

association, since midday water potential decrease with water stress and eventually the 

plant will die from runaway embolism. Chronic decline is only observed in adult trees 

and relative measurements of midday water status indicate whether tree is suffering on 

not from sapflow reduction.  

P. cinnamomi inoculation in cork and holm seedlings under appropriated abiotic 

conditions have already indicated their moderate susceptibility to infection; fine-roots 

are destroyed by the pathogen but plants may eventually replace them or support some 

root pruning before showing above symptoms. In this study it was found an association 

between fine-roots and adult tree water status, but more studies in the field should be 

underwent to understand the differential contribution of sink and fine roots in tree water 

status and resilience to fine-root destruction. The questions raised were: adult trees 

located in soils with no limitations in access to deep groundwater are able to support 

some fine-root destruction without sharp decline in tree water status? In addition, what 

is the role of ectomycorrhizae in protection of fine-roots and in overall tree benefit? 

Analyzed trees from areas affected by P. cinnamomi also showed high ECM root tips, 

irrespective of health status (Bloom et al. 2009). This could be related to the physical 

barrier around fine roots, protecting them against root pathogens: roots infected by 

ECM were able to survive and, on the contrary, roots infected by the pathogen showed 

reduced longevity – thus, percentage of ECM root tips is as high as in non-affected 

trees. However, both fine-roots and ECM root tips have high turnover and their 

longevity may last only one or two seasons. In areas of P. cinnamomi occurrence, where 
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natural ECM are not able to produce chemical compounds inhibiting pathogen growth, 

both may compete for root tip colonization. Therefore, in the presence of high ECM 

inoculum, the fungi may have competitive advantage for root colonization in detriment 

of the oomycete. In this study, application of ECM in established and healthy adult cork 

oaks, likely to have natural ECM colonizing their root tips, resulted in a positive 

outcome motivating further studies on artificial ECM applications for P. cinnamomi 

prevention through direct competition on root infection, or for overall tree health 

improvement.  

  Finally, the role of starch – and non-structural carbon compounds in general - in 

tree decline would also be also an interesting approach to be taken. If P. cinnamomi 

cause impaired phloem transport, it may have important implications in tree response to 

infection, not only in relation to plant defense against root pathogens that are mediated 

by secondary metabolites, but also in relation to ECM root infection – favoring species 

with less carbon requirements but maybe not so efficient in protecting against root 

pathogens.  

  



 

159 
 

8- FINAL CONSIDERATIONS  

 

This research was realized with the support of ICAAM (standing for Institute of 

Mediterranean Agricultural and Environmental Sciences) funding but it was not inserted 

in a broad project about the functional association between P. cinnamomi and cork oak 

decline, as it was expected in the beginning of the study. Consequently, there were some 

restrictions in the practical work, limiting the scope of the study. On the other hand, a 

deep analysis of former studies, complemented with observations realized in the study 

field, highlighted some aspects related to the association between P. cinnamomi and 

cork oak decline that should be explored more accurately. Therefore, this research 

moved to the direction of better comprehension of the physiologic status of adult trees 

under decline. It was then recognized that additional studies about decline processes 

should be undertaken in field conditions. Although experiences under controlled 

conditions allow a better understanding of the relation between each variable in plant 

responses, results obtained with this procedure cannot be extrapolated for adult trees, 

which are more complex, structurally and functionally, than young seedlings.  

Finally, for further studies, it would be interesting to cover the aspects between 

tree health status, P. cinnamomi occurrence, relevant edaphic factors and human 

management in the montado system. Such approach would be a further step to the 

ultimate objective of all these researches, which is decline reversion and improvement 

in health status of those trees that play an essential role in the conservation of 

biodiversity, ecological processes, such as water retention, soil conservation or carbon 

storage, and in the socio-economy of the rural, disadvantaged areas in the 

Mediterranean basin, being a successful example of a balancing conservation and 

development for the benefit of people and nature. 
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