
Temporal reasoning in a logic programming- language with modularity

Vitor Beires Nogueira

Orientador: Professor Doutor Salvador Pinto Abreu

Tese submetida d, (Jniaersidade d,e Euom

para obtengd,o do grau de Doutor em Informdtica

Departamento de Inform6tica
Universidade de livora

Dezembro de 2008

-\-iir*.#

Esta tese nd,o inclui as crtticas e sugestdes feitas pelo ifiri

Temporal reasoning in a logic programming
language with modularity

Vitor Beires Nogueira

Orientador: Professor Doutor Salvador Pinto Abreu

ffi
)?o t[^

a

U.E
Servipos

Acarlirnicos

Departamento de Informdtica
Llniversidade de l0vora

Dezembro de 2008

D€P6

N

Esta tese nd,o i,nclui as criticas e sugestdes feitas plo jdri

To Mi,guel and Susana wi,th loae

Acknowledgments

First of all, I would like to thank my son Miguel and my wife Susana for their caring
support throughout the years of this work. To my parents and sister also goes my
endless gratitude.

I thank my supervisor, Prof. Salvador Pinto Abreu, without whom this work wouldn't
have started, continued and most of all, finished. His participation on this thesis went
far beyond the expected critical watching and directing. I am thankful for the many
interesting discussions that we had, during which he guided me into how to do scientific
research. I thank him also for the great working conditions and for carefully reviewing
not only the contents but also the English, making this work not only understable but
also readabie.

I would also like to thank Prof. Gabriel Torcato David for his participation in this work.
Besides providing me with great working conditions at the Faculdade de Engenharia
of Universidade do Porto, he also supervised the beginning of this thesis.

Throughout this thesis, I also had the chance of working with members of Projet
Contraintes at INRIA Rocquencourt and in particular with Prof. Daniel Diaz. Several

important results came out of such cooperation. I acknowledge the INRIA/GRICES
project "Extensions au Logiciel Libre GNU Prolog" for the financial support that made

this collaboration possible.

I would like to acknowledge the Universidade de Evora and specifically the Departmento
de InformS,tica not only for the conditions given but also for the leave that allowed me

to focus entirely on this work.

I also acknowledge the Centria (Centro de Intelig6ncia Artificial) that by providing
supervisor funds, allowed me to participate in summer schools, conferences, workshops,

doctoral programs, etc.

Last, but definitely not least, I would like to dedicate this work to my friends, and in
particular to Paulo Estudante who was there for me on many occasions.

Abstract

Current Organisational Information Systems (OIS) deal with more and more infor-
mation that is time dependent. In this work we provide a framework to construct
and maintain Temporal OIS. This framework builds upon a logical language called
Temporal Contextual Logic Programming that deeply integrates modularity with tem-
poral reasoning making the usage of a module time dependent. This language is an
evolution of another one, also introduced in this thesis, that combines Contextual
Logic Programming with Temporal Annotated Constraint Logic Programming where
modularity and time are orthogonal features. Both languages are formally discussed
and illustrated.

The main contributions of the work described in this thesis include:

Optimisation of Contextual Logic Programming (CxLP) through abstract inter-
pretation.

Syntax and operational semantics for an independent combination of the temporal
framework Temporal Annotated Constraint Logic Programming (TACLP) and
CxLP. A compiler for this language is also provided.

Language (syntax and semantics) that integrates in a innovative way modularity
(CxLP) with temporal reasoning (TACLP). In this language the usage of a given
module depends of the time of the context. An interpreter and a compiler for
this language are described.

Framework to construct and maintain Temporal Organisational Information Sys-

tems. It builds upon a revised specification of the language ISCO, adding tempo-
ral classes and temporal data manipulation. A compiler targeting the language
presented in the previous item is also given.

1u

Sum6,rio

Actualmente os Sistemas de InformagSo Organizacionais (SIO) lidam cada vez mais
com informagS,o que tem depend6ncias temporais. Neste trabalho concebemos um
ambiente de trabaiho para construir e manter SIO Temporais. Este ambiente assenta
sobre um linguagem l6gica denominada Temporal Contextual Logic Programming
que integra modularidade com raciocinio temporal fazendo com que a utilizagSo de

um m6dulo dependa do tempo do contexto. Esta linguagem 6 a evolugS,o de uma
outra, tamb6m introduzida nesta tese, que combina Contextual Logic Programming
com Temporal Annotated Constraint Logic Programming, na qual a modularidade e o

tempo s5o caracteristicas ortogonais. Ambas as linguagens s5,o formalmente discutidas
e exemplificadas.

As principais contribuig6es do trabalho descrito nesta tese incluem:

OptimizagSo de Contextual Logic Programming (CxLP) atrav6s de interpretagS,o

abstracta.

Sintaxe e semA,ntica operacional para uma linguagem que combina de um modo
independente as linguagens Temporal Annotated Constraint Logic Programming
(TACLP) e CxLP. 6 apresentado um compilador para esta linguagem.

Linguagem (sintaxe e semA,ntica) que integra de um modo inovador modularidade
(CxLP) com raciocfnio temporal (TACLP). Nesta linguagem a utilizagSo de um
dado m6dulo est5, dependente do tempo do contexto. E descrito um interpretador
e um compilador para esta linguagem.

Ambiente de trabalho para construir e fazer a manutengSo de SIO Temporais.
Assenta sobre uma especificagS,o revista da linguagem ISCO, adicionando classes e

manipulagSo de dados temporais. 6 fornecido um compilador em que a iinguagem
resultante 6 a descrita no item anterior.

Contents

Acknowledgments

Abstract

Sum6rio

List of Acronyms

Preface

lll

xlx

Introduction and Motivation 3

1.1 Introduction . 3

1.1.1 Time . 3

l.L-2 Modularity 4

1.1.3 Organisational Information Systems 5

1.2 Temporal (Logic-Based) OIS 5

Temporal Reasoning in AI

2.1 Introduction .

2.2 General Notions of Time

2.2.1 Model of Time

2.2.2 Temporal Qualification .

2.3 Constraint-Based Temporal Reasoning

2.3.1 Qualitative Temporal Constraints

7

I

8

8

8

I
10

vll

viii colrrg^r?s

2.3.2 Metric Point Constraints 11

2.3.3 Hybrid Approaches 12

2.3.4 Programming Languages . 12

2.4 Temporal Modal Logic 15

2.4.1 Temporal Logic Programming

2.5 Reasoning About Actions and Change

2.5.1 The Situation Calculus .

2.5.2 The Event Calculus

2.5.3 Temporal

2.6 Conclusions

Nonmonotonic Reasoning

Temporal Databases

3.1 Introduction .

3.2 Temporal Data Semantics

3.3 Temporal Data Models and Languages

3.3.1 Temporal Data Model . . .

3.3.2 Temporal Languages

3.4 Temporal Databases Design

3.5 Temporal Database Products

3.5.1 Log Explorer

3.5.2 Time Navigator .

3.5.3 Data Propagator

3.5.4 SQL:2003

3.5.5 Oracle

3.5.6 TimeDB

3.6 Conclusions and Future Pointers

Modular Logic Programming

4.1 Introduction .

15

t6

L7

18

18

19

2L

21

22

22

23

26

32

32

32

33

33

33

34

35

35

37

37

CONTEATTS ix

38

38

39

39

4L

42

43

44

45

46

47

50

50

51

52

4.2

4.3

Algebraic Approach

4.2.7 The Algebra of Programs and Its Operators

Logical Approach

4.3.t Embedded Implications

4.3.2 Lexical Scoping

4.3.3 Closed Scope Mechanisms

4.3.4 Contextual Logic Programming

4.3.5 Lexical Scoping as Universal Quantification

Syntactic Approach

4.4.1 Prolog Modules: the ISO Standard

4.4.2 Implementations

Logic and Objects

4.5.1 Object-Oriented Programming and Embedded Implications

4.5.2 Logtalk

Conclusions

4.4

4.5

4.6

Contextual Logic Programming 53

5.1 Introduction . 53

5.2 The CxLP Language 54

5.3 Operational Semantics 55

5.3.1 Application of the Rules 57

5.4 Declarative/Fix-Point Semantics 57

5.5 Extensions 58

5.6 Optimisations 59

5.6.1 Abstract Interpretation for Static Scope Systems 60

5.7 Implementations 62

5.7.1 CSM (Contexts as SICStus Modules) 62

5.7.2 GNU ProloglcK 63

COI\r?E ITS

5.8 Conclusions 66

Temporal Reasoning in a Modular Language 67

6.1 Introduction. 67

6.2 CxLP with Temporal Annotations 68

6.3 Constraint Theory 70

6.4 Operational Semantics 70

6.5 Interpreter and Compiler . 7L

6.5.1 Time Point Domain 71

6.6 Related Work . 73

6.6.1 MuTACLP 74

6.6.2 Other Approaches 76

6.7 Concluding Remarks 77

7 Temporal Contextual Logic Programming

7.7 Introduction .

7.2 Language of TCxLP

7.2.1, Annotating Units . 80

7.2.2 Temporal Annotated Contexts 81

7.2.3 Relating Temporal Contexts with Temporal Units 81

7.3 Computing the Least Upper Bound 84

79

79

80

7.3.I Ground Temporal Conditions

7.3.2 Non Ground Temporal Conditions

7.4 Operational Semantics

7.4.1 Inference Rules

TCxLP Compiler and Interpreter

7.5.L From TCxLP to CxLP+TACLP

Application Examples

7.6.1 Management of Workflow Systems

84

85

87

87

89

89

91

91

7.5

7.6

COAITE]V?S

7.6.2 Legal Reasoning

7.6.3 Vaccination Program

7.7 Related Work

7.8 Conclusions

Language for Temporal OIS

8.1 Introduction .

8.2 Revising the ISCO Programming Language

8.2.L Classes

8.2.2 Methods

8.2.3 Inheritance

8.2.4 Composition

8.2.5 Persistence

8.2.6 Data Manipulation Goals

8.3 The ISTO Language

8.3.1 Temporal Classes

8.3.2 Temporal Data Manipulation

Compilation Scheme for ISTO

8.4.1 Classes

8.4.2 Methods

8.4.3 Inheritance

8.4.4 Composition

8.4.5 Persistence

8.4.6 Data Manipulation Goals

8.4.7 Temporal Classes

8.4.8 Temporal Data Manipulation Goals

Comparison with Other Approaches

xl

94

95

97

98

8.4

99

99

100

100

101

L02

t02

103

105

106

106

t07

107

108

108

108

8.5

8.6

109

110

110

110

111

t12

1t2Conclusions

xll COATTEATTS

E\rture Work 115

115

116

Conclusions and

9.1 Conclusions

9.2 Future Work

GNU Prolog/CX tL7

A.1 Thtorial Ll7

A.1.1 Unit Directive . ll7

A.I.2 Unit Arguments 118

A.1.3 Context Extension 119

A.7.4 Current Context 119

A.1.5 Context taversal 120

4..1.6 Context Switch 123

4.1.7 Supercontext

A.1.8 Guided Context Tlaversal

A.1.9 Calling Context

A.1.10 Lazy Call

A.2 Reference Manual

4.2.L Introduction .

4.2.2 Directives

4.2.3 Operators

4.2.4 Utilities

Constraint Logic Programming 133

8.1 Introduction . 133

8.2 Constraint Domains t34

8.2.L Booleans: CLP(B) 134

8.2.2 Pseudo-Booleans: CLP(PB) 134

8.2.3 Rationals/Reals: CLP(R) . 134

8.2.4 Finite Domains: CLP(FD) L34

128

t24

L24

L25

L26

128

128

128

732

CO,NITEAITS

8.3 Constraint Solvers

B.3.1 Incomplete Constraint Solvers

8.4 Finite Domains

8.4.1 Finite Domain Solvers

8.4.2 Network Consistency

B.4.3 Constraint Propagation (CP) vs. Backtracking

8.4.4 Constraint Propagation and Heuristics

8.4.5 Advanced Techniques

8.4.6 GlobalConstraints

8.4.7 Optimisation Constraints

xlll

134

135

136

136

136

L37

L37

138

138

138

L40

B.5

B.6

Defeasible Constraints

Conclusions

138

139

References

List of Tables

1 Reading paths 2

2.1 Tense logic modal operators 15

3.1 Prototypical temporally ungrouped employee relation 23

3.2 Prototypical temporally grouped employee relation 24

3.3 Temporal data models 25

3.4 BCDM tuple 25

3.5 Evaluation of algebras against criteria 27

3.6 Table 3.5 (continued) . . 29

5.1 Derivation: CxLP and embedded implications 62

7.L Vaccination recommended scheme 96

xv

List of Figures

Temporal qualification methods

The student enrolment process model

File system 122

I

92

2.7

7.7

A.1

xvll

List of Acronyms

ACL Annotated Constraint Logic

BCDM Bitemporal Conceptual Data Model

CLP Constraint Logic Programming

CRUD Create, Read, Update and Delete

CSP Constraint Satisfaction Problem

CxLP Contextual Logic Programming

EC Event Calculus

lA Interval Algebra

ISCO Information System COnstruction language

ISTO Information System Tools for Organisations

MuTACLP Multi-theory Temporal Annotated Constraint Logic Programming

OIS Organisational Information Systems

SC Situation Calculus

STP Simple Temporal Problems

TACLP Temporal Annotated Constraint Logic Programming

TCSP Temporal Constraint Satisfaction Problem

TCxLP Temporal Contextual Logic Programming

xlx

Preface

This work is the synthesis of several yearsl of research. One of the most important
Iessons learned during that time was that research is by no means a straight line, one

might even say that it is an (acyclic) graph. Not only did we foilow paths that turned
out to be dead-ends but also sometimes we had to abandon others which, although
promising, would cause us to stray from our goals.

One must say, that due to the (at least) lack of excellency of the author in the English
Ianguage, writing this thesis in such language was a bold act. We ask for the reader

sympathy on this subject.

Structure of the Work

Chapter 1 briefly introduces the concepts of time and modularity together with a logic
programming perspective of Organisational Information Systems (OIS). This chapter
also motivates for the integration of temporal reasoning with modularity in order to
obtain a language to construct and maintain OIS.

For self containment reasons, we survey several approaches to temporal reasoning in
Artificial Intelligence, temporal databases and modularity in logic programming in
Chap(s). 2, 3 and 4, respectively.

Chapter 5, besides describing the modular logic language that is at core of this work
called Contextual Logic Programming (CxLP), also presents a revised specification
together with an optimisation framework obtained with abstract interpretation.

In Chap. 6 we combine consolidated approaches for temporal reasoning (in this case

Temporal Annotated Constraint Logic Programming) and modularity (CxLP) into a
single language. Although such a combination provides an expressive language, in
Chap. 7 we propose a model where the usage of a module is influenced by temporal
conditions. Moreover, the CxLP program structure is very suitable for integrating with
temporal reasoning since it is quite straightforward to add the notion of. t'ime of the

lThe use of an indefinite adjective was (unfortunately) on purpose.

LIST OF FIGURES

contert and let that time help in deciding whether a certain module is eligible or not

to solve a goal.

In Chap. 8 we propose to augment the ISCO framework for constructing OIS with
an expressive means of representing and implicitly using temporal information. This

evolution builds upon the frameworks proposed in the previous chapters. Having

simplicity as a design goal, we present a revised and stripped-down version of ISCO,

keeping just some of the core features that we consider crucial in a language for the

development of Temporal OIS.

We draw some concluding remarks and provide pointers for future work in Chap. 9.

In Appendix A we present a tutorial and a reference manual for the contextual part

of GNU Prolog/CX. Finally, in Appendix B we briefly overview Constraint Logic Pro-

gramming.

Part of this work has appeared before in joint publications with Prof. Salvador Abreu

(my supervisor), Prof. Gabriel David and Prof. Daniel Diaz. I thank all of them for

letting me use the following common work [NAD03, NAD04, ADN04, AN05, NA06b,

AN06, ET06, NA06a, NA07d, NA07b, NA07a, NA07c].

Roadmap

There can be various reading paths for this thesis, in Table 1 we outiine some of them.

Subject Chapter

Survey on temporal reasoning

Survey on modularity
Combining temporal reasoning and modularity
Temporal Information Systems

Braue reader

t-2-3
7-4-5(optional)
L-2.3-6-7
L-2.3-7-8
1to9

Table 1: Reading paths

Chapter 1

Introduction and Motivation

In this chapter we start with a brief overview of the concepts that are at the
corc of this work: time and modularity. We also provide a short description
of Organisational Information Systems from a logic programming point of view.

Subsequently we argue for the need to integrate modularity with temporul reasoning

in order to provide a high level language in which to construct and maintain
Organisational Information Systems.

1.1 Introduction

1.1.1 Time

Time is an elusive concept, studied across such diverse disciplines as physics, mathemat-
ics, linguistics, philosophy, etc. Each one provides an evolving perspective of Time: in
physics, Newton defined Time as a dimension in which events occur in sequence whereas

Einstein, in the special theory of relativity, stated "time intervals appear lengthened
for events associated with objects in motion relative to an inertial observer" [Wik08].

In the last decades a great number of logic languages that deal with Time have been

proposed. According to Van Benthem [Joh91], logic can be considered as a bridge
between linguistics and mathematics since logic takes into consideration both the
aspects of language and ontology. This author also points out that logics multiplicity
of languages, theories of inference and formal semantics are adequate for the diverse

intuitions inherent to the study of Time.

In a broad sense we can define a temporal database as a repository of temporal informa-
tion [Cho94] therefore one can say that most database applications are supported by
temporal databases. SQL [fS03] is often the language chosen for interacting with such

databases. Although SQL is a very powerful language for writing queries, modifications

CHAPTER 1. INTRODUCTION AAID MOTIUATION

or constraints in the current state, it does not provide adequate support for the

temporal counterparts: for instance the temporal equivalent to an ordinary query

can be a very challenging task to express in SQL. To overcome such difficulties,

several temporal data models, algebras and languages have been proposed. Moreover,

McKenzie and Snodgrass [LEMS91] demonstrated that the design space for temporal

algebras has, in some sense, been explored in that all combinations of basic design

decisions have at least one representative algebra.

The logical and the database approach to Time are closely related: according to

[BMRT02] temporal logic languages are responsible not only for the temporal databases

theoretical foundations but also for their powerful knowledge representation and query

Ianguages.

Temporal reasoning plays an important role in many areas of Artificial Intelligence

such as Natural Language, Planning, Agent-Based Systems, etc. Most approaches are

restricted to the propositional case and follow an interval-based view originated in
Allen's Interval Algebra [41183]. Moreover, temporal reasoning in AI is concerned with
using additional assumptions (such as persistence or defaults) or special procedures

(like persistence) to derive conclusions [Cho9].

L.L.2 Modularity

Module systems are an essential feature of programming languages, nameiy because

besides structuring programs they also allow the development of general purpose li-
braries.

A modular extension to logic programming has been the object of research over the last

decades. In a broad sense one can distinguish three different approaches to modularity:

the algebraic, the logical and the syntactic. The algebraic approach started with work

by O'Keefe [O'K85] and considers logic programs as elements of an algebra, whose

operators are the operators for composing programs. The logical approach is based on

work by Miller [Mil86, Mi189a], and extends the Horn language with logic connectives

for building and composing modules. Finally, the syntactic approach (see [HF06] for

a recent overview and a proposal of such approach) addresses the issue of the global

and flat name space, dealing with the alphabet of symbols as a mean to partition large

programs.

Contextual Logic Programming is modular extension of Horn clause logic proposed

by Monteiro and Porto [MP89, MP93]. The CxLP ertens'ion goal can be regarded

as a non-monotonic version of Millerimpli,cati,on goal lMi86, Mil89a]. The ertens'ion

goal is denoted by >> and D > G (D is a set of ciauses and G a goal) is derivable

from a program P lf G is derivable from AU D and A is derivable from P, for some

1.2. TEMPORAL (LOGTC-BASED) OrS

finite set A of atoms for predicates not defined in D. Therefore) provides a sort of
lexical scoping for predicates: predicates in G which are defined in D are bound to
such definitions, the others can be obtained from program P. Besides lexical scoping,

CxLP also accounts for contextual reasoning, that is widely used for several Artificial
Intelligence tasks such as natural language processing, planning, temporal reasoning,

etc. Work by [AD03a] presents a revised specification of CxLP together with a new

implementation for it and also explains how this language can be viewed as a shift into
the Object-Oriented Programming paradigm.

1.1.3 Organisational Information Systems

Organisational Information Systems (OIS) have a lot to benefit from Logic Program-

ming (LP) characteristics such as the rapid prototyping ability, the relative simplicity
of program development and maintenance, the declarative reading which facilitates
both development and the understanding of existing code, the built-in solution-space

search mechanism, the close semantic link with relational databases, just to name a
few. In [Por03, ADN04] we find examples of LP languages that were used to develop

and maintain information systems.

Information System COnstruction language (ISCO) [Abr01] is a state-of-the-art logical

framework for constructing Organisational Information Systems. ISCO is an evolution
of the previous language DL [Abr00] and is based on a Constraint Logic Programming
(CLP) framework to define the schema, represent data, access heterogeneous data
sources and perform arbitrary computations. In ISCO, processes and data are struc-
tured as classes which are represented as typedl Prolog predicates. An ISCO class may

map to an external data source or sink, such as a table or view in a relational database,

or be entirely implemented as a regular Prolog predicate. Operations pertaining to
ISCO classes include a querA which is similar to a Prolog call as well as three forms of
update.

L.2 Temporal (Logic-Based) OIS

Chomicki and Toman [CT98] stated that current Information Systems deal with more

and more complex applications where, besides the static aspects of the world, one

also has to model the dynami,cs,, i. e., time, change and concurrency. This statement
illustrates very clearly the importance of Time in OIS. It is our opinion that a language

for OIS must have the capability of performing temporal representation and reasoning

beyond the ad hoc approaches.

lThe type system applies to class members, which are viewed as Prolog predicate arguments.

CHAPTER 1. INTRODUCTION AAID MOTIUATION

The amount of information handled by OIS is enormous and has increased by orders of
magnitude over the last decades. Besides the already mentioned benefits of modularity,
we consider that this fact by itself should be sufficient to justify that modularity is a
si,ne qua non condrtion for designing and implementing OIS.

One common approach in combining modularity and time in a language is to consider

them as independent, or orthogonal, features. In this work we start by presenting a

Iogical based language that follows such guidelines.

Nevertheless, time and modularity can combine into a more fruitful environment, i. e.

one where these features are more intertwined. We propose an extension of a modular

Iogic language where temporal reasoning is deeply integrated, making the usage of a
module itself time dependent. We consider this proposition to be natural and in fact

largely employed in several domains where a given law, criteria application is time
dependent.

Finally, we will show that the language above provides a sound basis for a framework

to construct and maintain Temporal Organi,sati,onal Informat'ion Systems.

Chapter 2

Temporal Reasoning in Artiflcial
Intelligence

This chapter provides an overview of temporal reasoning in Artificial Intelligence.

It starts by introducing the notion of model of time and temporal qualification.
Afterwards it describes several constraint and modal logic based proposals for
temporal reasoning. Finally, some theories for reasoning about actions and change

arc discussed.

2.L Introduction

Temporal reasoning plays an important role in many areas of Artificial Intelligence
such as Natural Language, Planning, Agent-Based Systems, etc. Most approaches are
restricted to the propositional case and follow an interval-based view originated in
Allen's Interval Algebra [AIl83] (see Sect. 2.3.1 for a description of such an algebra).
Moreover, temporai reasoning in AI is concerned with using additional assumptions
(such as persistence or defaults) or special procedures (like persistence) to obtain
conclusions [Cho9]. For further reading on this subject see for instance [Vil94, CM00,
Aug01, FGV05].

This chapter, for self-containment reasons, presents a general survey of temporal rea-

soning in AI and is organised as follows: Sect. 2-2 starts out by specifying several
key concepts pertaining to the foundations of temporal reasoning such as temporal
ontologg, topology and quali,fi,cat'ion. Afterwards, we present three subfields of temporal
representation and reasoning in AI: constraint-based temporal reasoning (Sect. 2.3),
temporal modal logic (Sect.2.4) and reasoning about actions and change (Sect. 2.5).
The chapter ends with a brief summary of the concepts and approaches described
therein.

8

2.2

CHAPTER 2. TEMPORAL REASOIfII\IG I I AI

General Notions of Time

In this section we briefly describe the notions of model of time and temporal qualifica-

tion.

2.2.L Model of Time

To define a model of time we need to define not only the ti,me ontology but also the

ti,me topology. By ti,me ontologA we mean the class or classes of objects time is made of,

i.e. one has to choose between ti,me poi.nts and i,nteruals as the basic temporal entities.

Regarding the ti,me topology we can consider different structures for time, namely

whether it is:

discrete, dense or continuous;

bounded, partially bounded or unbounded;

linear, branching, circular or with a different structure.

Moreover, it is helpful to know what kind of properties the structure of temporal

individuals have as a whole, i.e.:

are all individuals comparable by the order relation (connectedness)?

are ali individuals equal (homogeneity)?

is it the same to look at one side or at the other (symmetry)?

2.2.2 Temporal Qualification

Temporal qualification refers "to the way logic is used to express that temporal propo-

sitions are true or false at different times" [RV05] and is by itself a very prolific field of

research.

Besides modal logic proposals, from a first-order point of view we can consider the

following methods for temporal qualification: temporal arguments, token arguments,

temporal reification and temporal token reification. For a brief description of the

different proposals please consider Fig. 2.1 taken from [RV05]. Temporal reification

assigns a special status to time and allows quantification over propositions. The

main criticism made to reification is that such an approach requires a sort structure

2.3. COATS"RA INT-BASED TEMPORAL REASOAIIAIG

Reify_into(type) + Add_argument(time)

holds(effective(o, a, b,

Add_argu ment(token)

effective(o, a, b, ..., tt1), holds(ttl), begin(tt1)=t1, end(tt1)=t2

First-Order Logic

Modal Logic

Figure 2.1: Temporal qualification methods

to distinguish betewen terms that denote real objects of the domain (terms of the
original object language) and terms that denote propositional objects (propositions of
the original object language).

2.3 Constraint-Based Temporal Reasoning

According to [Pao] constraint-based approaches mainly focus on the definition of a
representation formalism and of reasoning techniques to deal specifically with temporal
constraints between temporal entities, independently of the events and states associated

with them. Following these guidelines, a class of Constraint Satisfaction Problem (CSP)

was defined, called Temporal Constraint Satisfaction Problem (TCSP), where variables
represent time and constraints represent temporal relations between them. Different
TCSPs are defined depending on the time entity that variables can represent, namely

time points, time intervals, durations (i.e. distances between time points) and the class

of constraints, namely qualitative, metric or both [SV98]. Each class of constraints is

characterised by the underlying set of basi,c temporal relati,ons.L

TCSP constraints are binary and C6i : {rt,. ..,r*} is a constraint2 between the
variables X, and X7 where each 16 is a basi,c temporal relati,on. A si,ngleton labelli,ng

lThe elements of all basic temporal relations are mutually exclusive and their union is the universal
constraint.

2The set is interpreted as a disjunction of relations.

I

Classical Logic
Atomic Formula

holds [tl, t2l (effective(o, a, b, ...))

10 CHAPTER 2. TEMPORAL REASOATIATG IAI AI

assigns an r; to the pair X6, Xi,, and the solut'ions of a TCSP are its consistent singleton

labelling.

The main techniques to find a solution to the general problem are path-consistency

and backtracking algorithms. Finally, there are typically two tasks when working with
TCSP: deciding consistency and answering queries about scenarios that satisfy all

constraints.

For a comprehensive survey on this subject see for instance [SKD94, Kou95, SV96,

Sch98, SV98]

2.3.t Qualitative Temporal Constraints

Qualitative temporal constraints deal with the relative position between time points

or intervals.

Allen's Interval Algebra

The Interval Algebra (IA) was proposed by James F. Allen [AIl83]. In this work, domain

elements are temporal intervalss and constraints are built using the thirteen basic

relations between intervals: before, after, meets, met by, equal, ouerlaps, ouerlapped by,

duri,ng, contai,ned by, starts, started bE, fini.shes, fini,shed bg. The operations on those

relations include composition and Boolean operators.

Intervals are used to qualify properti,es, euents and processes. We say that a proper-tg

holds over an interval if and only if it holds for all its subintervals whereas a proccess

occurs over an interval if it occurs in at least one of its subintervals. Events occurs

over the smallest possible interval [Rib93].

In [VKvB9O] it is shown that the satisfiability of AIIen's algebra is NP-complete. The

study of maximal tractable subclasses started with Nebel and Biirckert (ORD-Horn

algebra [N894]) and recently Krokhin et. al. [KJJ03] showed that the IA contains

exactly eighteen maximal tractable subalgebras. Moreover, they also proved that
reasoning in any fragment not entirely contained in one of the these subalgebras is

NP-complete.

sBesides intervals, the only other structural property defined is that time is linear. Everything else

is set by the user according to the application.

2.3. COAIS"RA INT-BASED TEMPORAL REASOAIII\IG

Vilain and Kaut'z Point Algebra

The Point Algebra was introduced by Vilain and Kautz [VK86l. In their proposal, the

domain elements are the temporal points and define the three basic relations that can

hold between temporal points, i.e., before, equal and after (<,:, >). Moreover, the

Point Algebra defines two operations between these point-point relations: com,posi,ti,on

and i,ntersecti,on.

Regarding compiexity, the full point algebra is tractable [VK86, VKvB90, Hir97].

Interval-Point Algebra

The Interval-Point algebra was proposed by Vilain in [Vil82]. In this algebra variables

stand for time points or intervals and the oniy type of relations are between between

a point and an interval. Moreover, since in an intervallal,a2l we have a1 1a2, there

are only five possible relations: before, starts, during, finishes and after.

The complexity of deciding satisfiability in this algebra is NP-complete [Mei96].

Qualitative Algebra

Meiri [Mei96, Mei91] proposes a combination of the all the preceding algebras: AIIen's

Interval Algebra, the point algebra and the interval-point algebra. As expected, this
proposal handles both time points and time intervals and can relate points with points,

points with intervals and intervals with intervals.

In [JK0] the authors identify all tractable fragments of this algebra and also prove

that all other fragments are NP-complete.

2.3.2 Metric Point Constraints

The metric point constraints proposal is based on the notion of time points and the

distance between them, i.e. variables represent time points and the allowed temporal

relations is the set of intervals of ti,me-structure. A constraint has the form Cu :
{[or, br], . . . ,lor,b7,]] and stands fora:

(r, < Xi- Xo < bt) v ...Y (oraXi- Xt<bn)

aThe representation was taken from [SV98], replacing the conjunction by a disjunction that was

probably a typo.

11

t2 CHAPTER 2, TEMPORAL REASOI\III\IG IN AI

There are three operators for the metric constraints: 'inuerse, i,ntersecti,on and con'Lpo-

si.ti.on. With respect to complexity we have that deciding consistency and computing
a solution of a metric point constraint problem is NP-complete [DMP91]. Finally,

[SV98] describes the three known relation based tractable classes, i.e. Simp]e Temporal

Problems (STP), STP with inequation constraints (for continuous domains only) and

Star TCSPs.

2.3.3 Hybrid Approaches

Meiri [Mei96l proposed a very expressive constraint language in which both qualitative
and quantitative/metric constraints can be represented, this way allowing the repre-

sentation and processing of most types of constraints. This proposal combines the

Quali,tati,ue Algebra (Sect. 2.3.L) with Metri,c Poi,nt Constrai,nts (Sect. 2.3.2).

Besides this general proposal, Meiri studied other subclasses that were also found to
be intractable:

o qualitative point with unary metric;

o qualitative interval with unary metric.

2.3.4 Programming Languages

This section describes a short list of languages for temporal reasoning that, besides

being constraint-based, have some affinity to (Constraint) Logic Programming.

Temporal Prolog

Temporal Prolog [Hry93] can be regarded as a "synthesis of temporal logic and of the
Constraint Logic Programming paradigm, in which temporal constraints are formu-
Iated". Temporal Prolog has several objectives, namely: the temporal logic inherent

to the language should be intuitive and efficient, easily integrated in a LP paradigm

and easy to implement on top of the Prolog interpreters. Following these guidelines,

Temporal Prolog proposed a first-order rei,fied, logic where H0LDS (P, T) means that the

statement (".g. u Prolog clause) P holds (i.e., is true) in interval T and H0LDS(P) means

that P holds without limitation to a temporal interval. The interval-based axioms of
Temporal Prolog are the following:

o H0LDS(A, S) & subinterval(T, S) -- HOLDS(A, T).

2.3, COIISTRA INT-BASED TEMPORAL REASOAIIAIG

. H0LDS(A) -- (VT) HOLDS(A, T).

o HOLDS(A, T) &

o HOLDS(A, U) &

o HOLDS(A, S) &

H0LDS (B, T) ---+ HOLDS (A & B, T) .

H0LDS(B, V) & union(U, V, T) ---+ HoLDS(A V B, T).

HOLDS(- A, T) -- disjoint(S, T).

florn Ternporal Reference Language

13

Horn Temporal Reference Language [Pan95] is also a temporal extension of Prolog.

In this language, atoms can have temporal labels to express their validity. It allows

two types of extended atoms: events (not necessarily true over every subinterval) and
properties (hold over every subinterval). Moreover, it provides inference rules for these

extended atoms together with a transformation from this language to Constraint Logic

Programming.

Temporal Annotated Constraint Logic Programming

Temporal Annotated Constraint Logic Programming (TACLP) [Frii93, Frti94b, F]ii96l
is presented as an instance of Annotated Constraint Logic (ACL) [Frii96], suited for
reasoning about time. ACL generalises basic first-order Ianguages with a distinguished
class of terms called constrai,nts, and a distinguished class of terms, called annotat'ions,

used to label a formula.

TACLP allow us to reason about qualitative and quantitative, definite and indefinite
temporal information using time points and time periods as labels for atoms [RF00a].
This section presents a brief overview of TACLP that follows closely Sect. 2 of [RF00a].
For a more detailed explanation of TACLP see for instance [Frii96].

We consider the subset of TACLP where time points are totally ordered, sets of
time points are convex and non-empty, and only atomic formulas can be annotated.
Moreover clauses are free of negation.

Time can be discrete or dense. Time points are totally ordered by the relation (. We

call the set of time points D and suppose that a set of operations (such as the binary
operations +, -) to manage such points, is associated with it. We assume that the
time-line is left-bounded by the number 0 and open to the future (-). A t'ime period

is an interval [r,s] with 0 (r (s (oo, r e D, s € D and represents the convex,

non-empty set of time points {t I r < t < s}. Therefore the interval [0, -[denotes the
whole time line.

L4 CHAPTER 2. TEMPORAL REASOAIIIIG n\r AI

Definition 1 (Annotated Formula) An annotated formula i,s of the form Aa where

A i,s an atomi,c formula and a an annotati,on. Let t be a ti.me poi,nt and I be a ti,me

peri,od:

(at) The annotated formula A at t rneans that A holds at t'ime poi,nt t.

(th) The annotated formula A th I means that A holds throughout I, i,.e. at euery

ti,me poi,nt i,n the peri,od I.

A th-annotated formula can be defined'in terms of an at-annotated as: A th I e
Vt(teI--+Aatt)

(i,n) The annotated formula A in I rneans that A holds at some t'i,me poi,nt(s) i,n the

ti,me peri,od I , but there i,s no knowledge when eractly. The i,n annotati,on accounts

f orindefi,n'ite temporal i,nformati,on.

An i,n-annotated formula can also be defined in terms of an at-annotated as:

AinIe 1t(te InAatt).

The set of annotations is endowed with a partial order relation f which induces a

Iattice. Given two annotations a and B, lhe intuition is that a C P if a is "less

informative" than p in the sense that for all formulas A, Ap + Aa.

In addition to Modus Ponens, TACLP has the following two inference rules:

Aa 'yaa
rule (r) Aa AP 'Y:alP

rule (l)
A1 A1

The rule (f) states that if a formula holds with some annotation, then it also holds with
all annotations that are smaller according to the lattice ordering. The rule (l) says

that if a formula holds with some annotation and the same formula holds with another

annotation then it holds in the least upper bound (denoted by u) of the annotations.

TACLP provides a constraint theory (detailed in Sect. 6.3).

A TACLP progran'L is a finite set of TACLP clauses. A TACLP clause is a formula of

the form Aa <- Cr,,...,Cn,Btat,,...,B*a* (*,n) 0) where A is an atom, a andai
are optional temporal annotations, the Ci's are the constraints and the @'s are the

atomic formulas. Friihwirth [Frii96], besides providing a meta-interpreter for TACLP

clauses, also presents a compilation scheme that translates TACLP into Constraint

Logic Programming. Finally, Raffaetd, and Friihwirth [RF00b, RF00a] provide both an

operational semantics and a fix-point one for TACLP.

2.4. TEMPORAL MODAL LOGIC

2.4 Temporal Modal Logic

In a succinct way we can say that Modal Logics can be regarded as the logics of
qualified truth [Che80]. In this logic besides standard logical symbols one also has

modal operators that are used to qualify formulas in the following way: if A is a
formula and V is a modal operator then VA is a formula.

Although the term Temporal Logic is used in a broad sense when referring to any

approach that deals with temporal information within a logic framework, it has a
more specific definition related to the Modal Logic approach to temporal informa-

tion [DMG94, Gal08]. Tense Logic [Pri57, Pri67, Pri68] defined by Arthur Prior is

regarded as the seminal work on this field. Prior proposed the four modal operators

described in Table 2.1. There are several formalisms that provide variations or exten-

sions to the Tense Logic, such as:

o Event Logic [Gal87];

o TM [Rei89] of Reichgelt;

o Logic of time intervals [HS91] of Halpern and Shoham.

See [Aug01] for an overview on the formalisms above.

Symbol Expression Symbolised

G "It will always be the case that . . . "
F "It will at some time be the case that . . . "
H "It has always been the case that . . . "
P "It has at some time been the case that . . . "

Table 2.1: Tense logic modal operators

2.4.L Temporal Logic Programming

This section follows the survey of Gergatsoulis in [Ger01] that states that the basis for
developing temporal logic programming languages are syntactic subsets of temporal and

modal logic which present well defined computational behaviour. One can consider two
broad approaches to the specification of these languages: Iinear-time and branching-
time temporal logic programming languages.

The following languages use linear-time:

15

16 CHAPTER 2. TEMPORAL REASON/I\IG IAI AI

Templog [AMS9] extends Horn logic programming with the operators Q (next),

n (always) and 0 (eventually). As an illustration consider the Fibonacci sequence

using Templog:

frb (0) .

of ib (1) .

o Chronolog [Org91] has two temporal operators first and nert, wherc frst stands

for the first moment in time and nert to the next moment in time. The foliowing

is a simple example of this language:

first light (green) .

next light (amber) <- light (green) .

next light (red) <- light (amber) .

next light (green) <- light (red) .

o Disjunctive Chronolog [GRP96] that combines Chronolog with Disjunctive Logic

Programming.

o Chronolog(MC) [LO96] is an extension of Chronolog based or Clocked Temporal

Logi,c where predicates are associated with local clocks.

o Metric Temporal Logic Programming (MTL) [Brz98] time can be either discrete

or dense. MTL has two temporal operators E7 and 0r defined as: nrA is true

if A is true in all moments in the interval I and 0rA is true if A is true in some

moment in the interval I. As an illustration of a simple fact in in this language

consider:

n;zoos,zoozlsalarY (Peter , 55000) '

Cactus [RGP97] is a proposal of a branching-time language that supports two main

operators: the temporal operator f i,rst which refers to the beginning of time and the

temporal operator nerti which refers to the i-th child of the current moment.

2.5 Reasoning About Actions and Change

Reasoning about actions and change studies the evolution of (a portion of) the world

as the result of the occurrence of a set of actions andf or events [CM00]. The main

mechanism of this field is temporal projecti,on, which can be further refined as:

2.5. REASOAIING ABOUT ACTIOIVS AI\ID CHANGE

forward temporal projecti,on that can be regarded as inferring consequences of
actions having some knowledge of what is currently believed. Usually this is

performed by deducti,on.

backward temporal projecti,on that can be regarded as inferring explanations of
given situations having some knowledge of what is currently believed. Usually

this is performed by i,nducti,on.

For a comprehensive study on inference of temporal knowledge see for instance [Rib93].

According to [CM00], temporal projection has to deal with three main problems:

the rami,ficati,on problen'L: concerns the specification of the effects of a given event;

the quali,fication problem'. concerns the specification of the conditions under which

an event actually produces the expected effects;

the frame problem: its related with the ones above and its the problem of
determining what stays the same about the world as time passes and actions

are performed.

Next we survey some of the more relevant theories of action and change.

2.5.L The Situation Calculus

L7

The Situation Calculus (SC) proposed by McCarthy and Hayes [MH69] was the first
formal representation of time in Artiflcial Intelligence. This formalism allows one to
model the evolution of a world and, although there is no explicit representation of time,

si,tuati,ons are used to model the flow of time. Besides situations, the SC also specifies

fi,uents and acti,ons:

o fluents are functions and predicates that change over

o act'ions stand for the possible actions that can be

world.

Except for the initial situation (usually denoted by ,So), all other situations are gener-

ated by applying an action to a situation. As a simple illustration taken from the blocks

world, consider the (reified) fluent on(A, B) stating that block A is on top of block B

and the auxiliary predicate HoIdsAt to specify when the fluents are true, one can say:

HoIdsAt (on (A, B) , result (move (A, B) , S)) to state that its true that A is on top B

time;

performed in the modeled

18 CHAPTER 2. TEMPORAL REASOAI/I{G n\r AI

in the situation that results from moving A to B in situation S. Using predicates instead

of functions, i.e. in a non-reified form we have on(A, B, result(move(A, B), S)).

Finally, the main objection to SC comes from the fact that is impossible to model

concurrent actions.

2.5.2 The Event Calculus

The Event Calculus (EC) formalism was proposed by Kowalski and Sergot [KS86] and

as the name states, the primitive objects are euents. In the EC, time is explicit and

euents are somewhat similar to the act'ions of SC. An EC fluent holds at time points

and there is an axiom to allow us to reason about intervals of times: a fluent is true at

a point in time if an event initiated the fluent at some time in the past and was not

terminated by an intervening event [RN03].

The relation Initiates (Terminates) expresses that the occurrence of an event e at a
time point t causes a fluent f to become (cease to be) true. There is also the relation

Happens that is used to state that an event e happens at a time t. As an example,

Happens (Turn0f f (LightSwitch) , 0:00) states that the lightswitch was turned off at
exactly 0:00.

Finally, Kowalski and Sadri [KS97] proved that the Event Calculus and the Situation

Calculus are equivalent.

2.5.3 Temporal Nonmonotonic Reasoning

The research on temporal nonmonotonic reasoning was tri,ggered by the Yale Shooti,ng

Problem [HM87]. Although this is a (very broad) field of research reaching beyond

the focus of the present work, for completeness reasons we decided to present a brief
overview (that follows [Aug01]) of several key formalisms in this area.

Shoham's Non-Monotonic Temporal Logic

Shoham's non-monotonic temporal logic [Sho88] is based on model preference and uses

Chronologi,cal lgnorance as a criterion to define a partial order between the models, i.e.

it prefers those models where a fact holds as late as possible.

sln the EC an interval stands for the set of points between the interval bounds.

2.6, COAICTUSIOAIS

Extended Situation Calculus

In [Pin9] Pinto adds explicit time to Situation Calculus and addresses several problems

such as: representation of concurrent and complex action; reasoning on a continuous

ontology; easy reference to dates; etc.

Defeasible Temporal Reasoning

In a broad sense one can say that argumentation systems allow us to reason about a
changing world where the available information is incomplete or unreliable. There are

several examples of argumentation system that embed temporal reasoning based on

intervals, on instants or both (see [Aug01] for an overview).

2.6 Conclusrons

We started this section by describing the notions of model of time and of temporal
qualification. We then reviewed several constraint-based and modal approaches to
temporal reasoning, with a stronger emphasis on the former since the temporal repre-

sentation and reasoning followed throughout this work is constraint-based. Although,
on a first look, first-order and modal approaches can be regarded as radically different,
Galton noted that they rely on the common use of a first-order language: the former
uses it as the proper representation language and the later as a model theory. Finally,
we briefly sketched the foundational theories for reasoning about actions and change.

The research on temporal representation and reasoning, even restricted to the one that
"fits" under the domain of artificial intelligence is so vast that a chapter such as this one

can only lightly brush over some aspects. For a more systematic and comprehensive

approach we suggest [FGV05].

19

Chapter 3

Temporal Databases

This chapter reviews the main concepts concerning temporal databases, namely

temporal data semantics, models and languages. Morcover, besides some considera-

tions about the design of these databases it also describes several temporal database

products.

3.1 Introduction

In a broad sense we can define a temporal database as a repository of temporal informa-

tion [Cho94] therefore one can say that most database applications are supported by

temporal databases. SQL [fS03] is often the language chosen for interacting with such

databases. Although it is a very powerful language for writing queries, modifications or

constraints in the current state, it does not provide adequate support for the temporal
counterparts: for instance, expressing the temporal equivalent of an ordinary query

can be a very challenging task in SQL. To overcome such difficulties, several temporal
data models, algebras and languages have been proposed.

McKenzie and Snodgrass [LEMS91] have shown that the design space for temporal

aigebras has in some sense been explored in that all combinations of basic design

decisions have at least one representative algebra.

In this section we present a brief overview of the temporal data semantics (Sect. 3.2)

together with the models and languages (Sect. 3.3) that we consider more significant.

For a more in depth study on this subject the reader may refer to [TCG+93, DD02].

Since the practical aspects of databases are highly important, we also review several

products that extend regular database management system in order to include temporal
capabilities (Sect. 3.5). Although most of these products only consider the time between

the insertion and the removal of a fact from the database some applications already

2t

22 CHAPTER 3. TEMPORAL DATABASES

suport the time when the fact is true in the modeled reality.

3.2 Temporal Data Semantics

According to [Jen00] a database models and records information about a part of reality
(modeled reality) where the diflerent aspects of this reality are represented by database

entities. In temporal databases, the facts recorded by the database entities can have

an associated ti,me and this is usually defined as uali,d ti,me or as transacti,on ti,me:

Definition 2 (Valid Time) The uali,d ti,me of a fact i,s the collected ti,mes - possi,bly

spanni,ng the past, present, and future - when the fact i,s true i,n the modeled reali,ty.

Definition 3 (Tlansaction Time) The transact'ion t'ime of a database fact'is the

ti,me spanni,ng between when i,t was i.nserted i,nto the database and when i,t was logi,cally

remoued from the database.

Unlike the valid time, the transaction time may be associated with any database entity
(not only with facts) and captures the time-varying states of the database. Applications

that demand accountability or "traceability" rely on databases that record transaction
time. Moreover, data consistency is ensured since the transaction timestamps are

maintained automatically by the DBMS.

There is no single answer on how to perceive time in reality and how to represent time
in a database. As mentioned in Sect. 2.2, to define a model of time we need to consider

not only the time ontology but also the time topologg. In databases, a finite and discrete

time domain is typically assumed. Most often, time is assumed to be totally ordered,

but various partial orders have also been used.

3.3 Temporal Data Models and Languages

According to [Dat99] a data model is an abstract, self-contained, logical definition of
the obiects, operators, and so forth, that together constitute the abstract machine

with which users interact. In the relational data model, the relations are the objects

and data is operated on by means of a relational calculus or algebra, with equivalent

expressive power.

Several proposals for extending the relational data model to incorporate the temporal
dimension of data have appeared in the literature. These proposals have differed

3.3, TEMPORAL DATA MODELS AAID LANGUAGES

considerably in the way that the temporai dimension has been incorporated both into
the structure of the extended relations of these temporal models and into the extended

relational algebra or calculus that they define.

Since there several dozen temporal data models, instead of providing a detailed descrip-

tion of each one we present a list with their names, main properties and references. A
similar approach will be followed in overviewing the temporal languages in Sect. 3.3.2.

The only exception is the language TSQL2 [IABC+gs] and its temporal data model

(Bitemporal Conceptual Data Model), since this language is regarded as a consensual

temporal extension of SQL-92.

3.3.1 Temporal Data Model

A useful taxonomy for temporal data models was introduced by Clifford et. al. [CCT94,
CCGTg5l who classified them into two main categories: temporally ungrouped (tuple
time stamping) and temporallg grouped (attribute time stamping) data models. To

illustrate these two categories please consider tables 3.1 and 3.2 taken from [CCT94],
to represent a temporal ungrouped and grouped, respectively, version of an employee

relation (in this modeled reaiity, employee Tom changes his narne to Thomas at time
3).

EMPLOYEE
NAME DEPT SALARY time

Sales 20K 0

Finance 20K 1

Finance 20K 2

MIS 27K 3

Finance 20K 1

MIS 3OK 2

MIS 4OK 3

Finance 20K 1

Sales 20K 2

Table 3.1: Prototypical temporally ungrouped employee relation

EMPLOYEE
NAME DEPT SALARY lifespan

[--+ Tom 0 --- Sales 0 ---+ 20K

23

Tom
Tom
Tom
Thomas

Jim
Jim
Jim
Scott

Scott

continued on next page

24 CHAPTER 3. TEMPORAL DATABASES

continued from previous page

NAME DEPT SALARY lifespan

1 + Tom 1 + Finance I --+ 20K
2 ---* Tom 2 --- Finance 2'--+ 20K
3 ---+ Thomas 3 ---+ MIS 3 ---+ 27K {0, 1, 2, 3}

1 --+ Jim 1 ---+ Finance 1 --+ 20K
2 ---+ Jim 2 --+ MIS 2 --+ 30K

$ ---+ Jim 3 ---+ MIS 3 ---+ 10K {1, 2, 3}
1 ---+ Scott 1 ---+ Finance 7 --+ 20K
2 ---+ Scott 2 -* Sales 2 --+ 20K {L,2}

Table 3.2: Prototypical temporally grouped employee relation

These authors also show that, although the temporally ungrouped models are less

expressive than the grouped ones, there is a grouping mechanism for capturing the

additional semantic power of temporal grouping. Moreover, they propose a metric of
historical relational completeness as a basic for determining the expressive power of
the query languages over these models.

Several data models use intervals in timestamps but that doesn't mean that such

models are interval-based: sometimes intervals are used as shorthands for time points.

In [BBJ98] the authors emphasise that the notions of point- and interval-based times-

tamps must be defined at the semantical level, Moreover, besides presenting a formal

definition for these notions they also evaluate several temporal data models.

Table 3.3 (taken from [JSS95]) Iists several influential temporal data models. For a

concise description of these models, together with their comparison, the interested

reader is referred to [JSS95].

Data Model Identifier Time Dimensions Reference

Temporally Oriented Data Model valid Ariav [Ari86]
Time Relational Model both Ben-Zvi lBZ82)

valid Brooks [8ro56]
Historical Relational Data Model valid Clifford

Homogeneous Relational Model valid Gadia

Heterogeneous Relational Model valid Yeung

transaction Jensen [JMR91I

lcc87l
[Gad88]

lGY88l

valid Jones uMSTel
transaction Kimball [Kim78]

DM/r
Legol 2.0

Data
continued on next page

3.3. TEMPORAL DATA MODELS AI\ID LANGUAGES 25

continued from previous page

Data Model Identifier TimeDimensions Reference

Temporal Relational Model
Temporal Relational Model
HQL
HSQL
Temporal Data Model
TQuel
Postgres

HQuel

Accounting Data Model
Time Oriented Data Base Model

valid
valid
valid
valid
vaiid
both
transaction
valid
both
valid

Lorentzos

Navathe

Sadeghi

Sarda

Segev

Snodgrass

Stonebraker
Tansel

Thompson
Wiederhold

[Lor88]

lNA8el
[Sad87]

[Sar90b]

lss87l
[Sno87]

lsKelI
lrA86l
[Thoe1]
lGwwT5l

Table 3.3: Temporal data models

Bitemporal Conceptual Data Model

The Bitemporal Conceptual Data Model (BCDM) [JS96] tries to maintain the simplic-
ity of the relational model and capture the temporal aspects of the facts stored in a
database. One possible definition of the BCDM according to [Jen00] is:

Definition 4 (Bitemporal Conceptual Data Model) both uali,d and transacti,on
ti,mes are supported and the relati,ons are coalesced.l Moreouer, the ualue now and

until changed are i,ntroduced for uali,d ti,me and transacti,on ti,me, respecti,uely.

This is a conceptual model where no two tuples with mutually identical explicit at-
tribute values are allowed, i.e. the full history of a fact is contained in exactly one tuple.
To illustrate this model, please consider a relation recording employee/department
information, taken from [JSS95]: employee Jake was hired by the company in the
shipping department for the interval from time 10 to time 15, and this fact became

current in the database at time 5. Afterwards, the personnel department discovers

that Jake had really been hired from time 5 to time 20, and the database is corrected
beginning at time 10. Table 3.4 shows the corresponding bitemporal element.

Emp Dept T
Jake Ship {(5, 10), ...,

. . . ,(9, 15), (10,
(5, 15), ..., (9, 10),

5), ..., (10, 20), ...)

Table 3.4: BCDM tuple

rValue equivalent tuples with the same non-timestamp attributes and adjacent or overlapping time
intervals are merged.

26 CHAPTER 3. TEMPORAL DATABASES

3.3.2 Temporal Languages

McKenzie and Snodgrass [LEMS91] provided a set of 26 criteria for evaluating temporal

algebras. Moreover, they also show that, out of these 26 criteria, seven criteria are

conflicting, i.e. no algebra can satisfy all 26 criteria. Finally, the authors evalu-

ate 12 algebras (Jones [JMS79], Ben-Zvt IBZ82|, Navathe [NA89], Sadeghi [Sad87],
Sarda [Sar90a], Clifford [CC87], Tansel [TA86l, Gadia [Gad88], Yeung [GY88], Lorent-

zos [LJ88], McKenzie [LEMSS], T\rzhi]in [TC90l) that extend the snapshot algebra

to support valid and/or transaction time. The result of such evaluation is depicted

in Tables 3.5 and 3.6. The possible table entries are: Y - satisfies criterion, P -
partial compliance, N - criterion not satisfied, NA - applicable, ? - not specified,

O - see [LEMS91].

Ben-Zvi Clifford Gadia Yeung Jones Lorentzos

Conflicting Criteria
1 Allattributesinatupleare Y N Y N Y N

defined for same interval(s)
5 Each set of legal tuples is a Y N Y N Y Y

legal relation
15 Restrictsrelationstofirst Y N N N Y Y

normal form
16 Supportsa3-Dviewof N N N ? N N

historical state and opera-

tions

LT Supportsbasicalgebraic Y P Y ? P Y
equivalences

23 Tuplesaretime-stamped Y P N N Y N

24 Uniquerepresentationfor N N N Y N N

each temporal relation
Compatible Criteria

2 Consistentextensionofthe Y Y Y ? Y Y
snapshot algebra

3 Dataperiodicityissup- N N N N N Y
ported

4 Each collection of legal at- N N N Y N N

tribute values is a legal tu-
ple

continued on next page

3,3. TEMPORAL DATA MODELS AATD LANGUAGES 27

continued from previous page

Ben-Zvi Clifford Gadia Yeung Jones Lorentzos

6 Formalsemanticsarewell P Y Y P N Y
defined

7 Hastheexpressivepower P ? Y P ? ?

of a temporal calculus

8 Includesaggregates Y N P P P Y
9 Incrementalsemanticsde- N N N N N N

fined

10 Intersection,O-join,natu- P P P N N N
ral join, and quotient are

defined
11 Is, in fact, an algebra Y N Y N Y Y
L2 Modeidoesn'trequirenull Y N Y Y Y Y

attribute values

13Multidimensional time- N N N Y N N

stamps are supported
14 Reducestothesnapshot Y P Y P Y P

algebra
18 Supportsrelationsof all P P P Y P P

four classes

19 Supportsrollbackopera- P N N Y N N
tions

20 Supportsmultiplestored N N N N N N
schemas

2L Supportsstaticattributes N N N Y N Y
22 Treats valid time Y ? ? Y ? ?

and transaction time
orthogonally

25 Unisorted (not N N N Y Y Y
multisorted)

26 Update semantics are P N N N N N
specified

Table 3.5: Evaluation of algebras against criteria

28 CHAPTER 3, TEMPORAL DATABASES

McKenzie Navathe Sadeghi Sarda Tansel T\rzhilin

Conflicting Criteria
1 Allattributesinatupleare N Y Y Y N O

defined for same interval(s)
5 Each set of legal tuples is a N N N Y Y NA

Iegal relation
15 Restrictsrelationstofirst N Y Y N N N

normal form
16 Supportsa3-Dviewofhis- Y N N N ? N

torical state and operations

17 SupportsbasicalgebraicP ? Y ? P Y
equivalences

23 Tuplesaretime-stamped N Y Y Y N NA
24 Uniquerepresentationfor Y Y Y N N NA

each temporal relation
Compatible Criteria

2 Consistentextensionofthe Y ? Y ? ? Y
snapshot algebra

3 Dataperiodicityissup- N N N N N N

ported
4 Each collection of legal at- N N N Y Y NA

tribute values is a legal tu-
ple

6 Formalsemanticsarewell Y P P P P Y
defined

7 Has the expressive power of Y P P P Y Y
a temporal calculus

8 Includesaggregates Y N N N Y N
g lncrementalsemanticsde- Y N N N N N

flned
10 Intersection,O-join,natu- Y P N N N Y

ral join, and quotient are

defined

11 Is, in fact, an algebra Y P ? ? Y Y
12 Modeldoesn'trequirenull Y Y Y Y Y Y

attribute values
continued on next page

3.3. TEMPORAL DATA MODELS A.I\ID LANGUAGES 29

continued from previous page

McKenzie Navathe Sadeghi Sarda Tansel Thzhilin

13 Multidimensional time-
stamps are supported

14 Reduces to the snapshot al-
gebra

18 Supports relations of all
four classes

19 Supports rollback opera-

tions
20 Supports multipie stored

schemas

2L Supports static attributes
22 Treats valid time and trans-

action time orthogonally
25 Unisorted

multisorted)
(not N

26 Update semantics are spec- Y
ified

Table 3.6: Table 3.5 (continued)

TSQL2 and SQl/Temporal

TSQL2 [IABC+95] is a consensuai temporal extension to the SQL-92 language stan-
dard [Int92]. The relations are similar to TQuel [Sno87] except that facts are times-
tamped not with (maximal) intervals but with fini,te un'ions of maximal intervals. A
TSQL2 fact has exactly one timestamp and there is a temporal algebra to give special
meaning to those timestamps. It was one of the design goals to make the format of
timestamps irrelevant, i. e. there is no commitment to a specific temporal domain and
consequently it does not allow testing for equality of time instants. TSQL2 is a point-
based data model. [IABC+95] presents an extensive discussion of the design decisions,
including an in-depth comparison with the other temporal query languages.

In 1994 the specification of TSQL2 was published which later result in proposals
for an extension to SQL3 called SQl3/Temporal (see [Sno]). The formulation of
SQl/Temporal has three very important requirements:

upward compatibility;

temporal upward compatibility;

N

YY

NA

N

Y

Y

Y

Y

P

N

N

N

N

NYY
???

YY

Y
?

Y

Y
?

Y
P

NN

30 CHAPTER 3, TEMPORAL DATABASES

. sequenced valid semantics.

Upward compatibility guarantees that (non-historical) legacy application code will
continue to work without change when migrating, and temporal upward compatibility

in addition allows legacy code to coexist with new temporal applications following

the migration. A logical consequence of the temporal upward compatibility is that

timestamps are implemented as hidden columns. Therefore one can conceptualise

temporal tables as being special "views" on conventional tables which include explicit

timestamp columns.

Sequenced valid semantics defines that SQl/Temporal must offer, for each query in

SQL3, a temporal query that "naturally" generalises the initial query.

Finally, the full temporal functionality normally associated with a temporal language

is added, specifically, non-sequenced temporal queries, assertions, constraints, views,

and modifications. These additions include temporal queries and modifications that

have no syntactic counterpart in SQL3.

SQl/Temporal has three different semantics for the queries, namely:

temporally upward compatible: the query is evaluated only on the current state;

sequenced: the query is effectively evaluated on each state independently2;

non-sequenced: the query is evaluated at the specified state.

The semantics above apply orthogonally to valid time and transaction time.

For a better understanding of the proposed language we use a motivational example

Employees

Positions

Incumbents

Salarv

from [Sno07]. Consider the foilowing table schema:

SSN FirstName LastName Birthdate

PCN I Jobtitle

SSN PCN FlomDate ToDate

SSN Amount FromDate ToDate

With the schema above, consider a SQL-92 sequenced query to provide the salary and

position history for all employees:

SELECT S. SSN, Amount , PCN, S. FromDate , S. ToDate

2lntuitively, a sequenced query is the temporal analogue of a query on the current state.

3.3. TEMPORAL DATA MODELS A,NID LANGUAGES 31

FR0M Salary S, Incumbents I
I'IHERE S. SSN = I. SSN

AND I. FromDate < S. FronDate AND S. ToDat€ (= I. ToDate
UNION ALL
SELECT S. SSN, Amount , PCN, S. FromDate , I. ToDate
FROM Salary S, Incumbents I
WHERE S. SSN = I. SSN

AND S. FromDate)= I. FromDate
AND S. FromDate (I. ToDate AND I. ToDate < S. ToDate
UNION ALL

SELECT S. SSN, Amount , PCN, I. FromDate , S. ToDate
FR0M Salary S, Incumbents I
WHERE S. SSN = L SSN

AND I. FromDate)= S. FromDate
AND f. FromDate < S. ToDate AND S. ToDate (I. ToDate
UNION ALL

SELECT S. SSN, Amount , PCN, I. FromDate , I. ToDate
FR0M Salary S, Incumbents I
I,IHERE S.SSN = I.SSN
AND I. FromDate > S. FromDate AND f. ToDate < S. ToDate

The size and complexity of the query above has to due with the different possible rela-
tions between the intervals ([FromDate, ToDate]) oftables Salary and Incumbents.
In SQl/Temporal and assuming that Incumbents and Salary are valid time tables,
this query reduces to:

VALIDTIME SELECT S. SSN, Amount , PCN

FR0M Incumbents I, Salary S

WHERE S. SSN = I. SSN

Nevertheless, although this language was accepted by the ANSI committee, from the
ISO committee point of view the SQL/TemporaI is in li,mbo, at the time of this
writing. This is mainly because of criticisms that appeared during its ISO discussion:

in [DD05] the authors take a brief Iook at TSQL2 and compare this language with
the one proposed in [Dat99, DD02]. According to the authors the major flaw is that
TSQL2 involves "hidden attributes"3 therefore leading to a major departure from The
Informat'ion Principle which states that all information in the database should be
represented in one and only one way, namely, by means of relations. This uniformity
carries with it uniformity of access mode (all data in a table is accessed by reference

to its columns names) and uniformity of description (to study the structure of a table,
one needs only to examine the description).

3lSqlZ valid and transaction time columns are always hidden by definition.

32 CHAPTER 3, TEMPORAL DATABASES

Moreover, the authors also consider that the concept of statement modifiers to be

Iogically flawed. Finally, regarding temporal upward compatibility of TSQL2, these

authors reject the very idea that the goal might be desirable, Iet alone achievable.

In [DD02] Date et. al deal with the problems of data representing beliefs that hold

throughout given intervals and propose a foundation for the inclusion of support for

temporal data in a truly relational database management system where additional oper-

ators on relations and relation variables having interval-valued attributes are definable

in terms of existing operators and constructs.

3.4 Temporal Databases Design

With respect to their logical design, temporal databases have higher needs for design

guidelines nevertheless concepts such as normalisation are not directly applicable to

temporal data modelling. One approach considered applying the concepts to all the

snapshots of a temporal relation, but this isn't truly temporal as it applies to each

snapshot in isolation.

Semantic modelling is traditionally done through a high-level conceptual design model

such as the Entity-Relationship model. Although these models are quite understand-

able and natural, the introduction of temporal issues make them cluttered (for a survey

on this subject the reader is referred to [GJ99]).

3.5 Temporal Database Products

In this section we present a brief overview of all the products (at }east to our knowledge)

that allow some sort of temporal support in the context of databases. As we will see,

most of the products provide only (some sort of) transaction time support. Oracle

Workspace Manager and TimeDB are the only ones with valid time support. The

reviews about Log Explorer, Time Navigator, Data Propagator and FlashBack Queries

follow closely [Sno].

3.5.1 Log Explorer

Log Explorer [Lum] is a product from Lumigent that allows the analysis of SQL Server

logs. Log Explorer gives the abiiity to view the evolution of rows over time and then

selectiveiy recover modified, deleted, dropped, or truncated data, exporting data for

follow-up analysis and reporting (on both the relational data and the schema).

3.5. TEMPORAL DATABASE PRODUCTS

3.5.2 Time Navigator

Time Navigator [Ate] from Atempo is a high performance online backup and recovery
solution for heterogeneous environments, including several major DBMS such as Oracle,
Microsoft SQL Server, DBZ, Sybase and MySQL. It buitds a sliced repository of a
database, thereby enabling image-based restoration of a past siice.

3.5.3 Data Propagator

DataPropagator [IBM] from IBM can use data replication of a DB2 log to create both
before and after images of every row modification to create a transaction-time database
that can be later queried.

3.5.4 SQL:2003

SQL:2003 [EMK+04], is at the time of writing, the most recent revision of the SQL
standard. The full iength definition of this language can be obtained from the ISO
documents [fS03], but since we are interested in the temporal aspects, below we present
a brief overview of them.

In SQL:2003 there are three datetime types, each of which specifies values comprising
datetime fields:

TIME comprises values of the datetime fields HOUR, MINUTE and SECOND
(possibly WITH TIME ZONE). TIME is a valid time of day.

DATE comprises values of the datetime fields YEAR (between 0001 and gggg),

MONTH, and DAY. DATE is a valid Gregorian date.

TIMESTAMP comprises values of the datetime fields YEAR (between 0001 and
9999), MONTH, DAY, HOUR, MINUTE and SECOND (possibly WITH TIME
zoNE).

For the data types above there are several comparison predicates. Besides these
elementary types SQL:2003 also has an interval type to represent the duration of a
period of time. Moreover, we can consider two classes of intervals. One class, called
year-month intervals, has a datetime precision that includes a YEAR field or a MONTH
field, or both. The other class, called day-time intervals, has an express or implied
interval precision that can include any set of contiguous fields other than YEAR or
MONTH.

33

34 CHAPTER 3, TEMPORAL DATABASES

Besides intervals and datetime arithmetic there is an explicit CAST between datetime

tvpes and character string type. Finally, there are several time-varying system vari-

ables such as CURRENT-DATE, CURRENT-TIME, CURRENT-TIMESTAMP,

LOCALTIME, LOCALTIMESTAMP.

Although SQL:2003 isn't really a temporal database language, in fact almost all the fea-

tures above are legacy from previous SQL versions, we decided to include a description

of this language due to its widespread'

3.5.5 Oracle

Oracle DBMS support for temporal data goes far beyond the one we saw in the previous

section (SQL:2003). Among the features/tools related with temporal information,

below we describe the ones that we consider more relevant for this work.

FlashBack Queries

Oracle 9i flashback queries allows the application to access prior transaction time states

of the database. Oracle 10g extends these queries to retrieve all the versions of a row

between two transaction times and allows tables and databases to be rolled back to a

previous transaction time, discarding all changes afber that time.

Workspace Manager

Workspace manager appeared on Oracle database 10g and according to [Cor05] allows

current, proposed and historical values for data in the same database using workspaces.

A workspacea is a virtuai environment that logicaliy groups coliections of changes that

are physically contained in one or more version-enable tables. Version-enabled tables

are tables where all rows can support muitiple versions of the data. Since this versioning

is invisible to the users of the database, DML statements continue to work in the usuai

way. Moreover, version-enabled tables have the history option, adding a transaction

time timestamp every time the row is changed and allowing users in a workspace to go

back to any point in time and view the entire database from a perspective of changes

made in that workspace.

Finally, its possible to associate a valid time to stored data. To use such valid time,

the user sets a valid time in his session context before executing a query. Afterwards,

all queries only return versions stamped with a valid time that falls within the valid

time set for the session context.
aUnless specified, the default user workspace is the current one'

3.6. CONCLUSIOAIS AAID FUTURE POINTERS

3.5.6 TimeDB

Instead of being integrated with the internal modules of a DBMS, TimeDB [Ste05]
provides a sofbware layer between the user-applications and a conventional (atemporal)
DBMS. TimeDB supports a temporal version of SQL called ATSQL2 [SBJS97] by
translating temporal SQL statements into standard SQL statements which are then
evaluated using a regular database management system. The language supports valid
and transaction time, along with temporal queries, insert, update and delete state-
ments. Finaliy, it has temporal tables (along with temporal constraints and assertions)
and views.

3.6 Conclusions and Rrture Pointers

It is an acknowledged fact that most (if not all) database applications have temporal
issues. In this chapter we saw that the research community has provided several
temporal data models and languages. Therefore one question arises: why do most
DBMS only have basic temporal support?

One possible answer to this question comes from the fact that even the more elementary
notions of temporal databases (valid and transaction time) are quite complex leading to
a departure from one of the reasons that made the relational model so widely accepted:
its simplicity.

Another possible answer has to do with legacy issues. Most applications deal with
the temporal issues in an ad-hoc way. When migrating to a temporal DBMS, some

applications should also change in order to benefit from the new temporal mechanisms,
but legacy applications are not very likely to change.

Wang et. al. \WZZ\\) advocated that SQL:2003 and the XML/XQuery standards have
actually enhanced our ability to support temporal applications in commercial database
systems. To this end, they showed that the integration of SQL and XML allowed the
management of transaction time information and stated that this approach could be
extended to valid time and bitemporal databases.

The area of spatiotemporal databases is becoming increasingly important (see [AR99,
SN04]). There is a strong need to support objects with extents in space and in time,
therefore a whole new field of (database) applications will be available which require
support for these features.

Multimedia presentations and virtual reality scenarios are in fact special breeds of
spatiotemporal databases. Also the new area of temporal data mining is emerging.

35

CHAPTER 3. TEMPORAL DATABASES

As a concluding remark one would like to say that temporal databases do require a

new way of thinking about information and there are still several directions for future

developments.

Chapter 4

Modular Logic Programming

This chapter provides an overview of the different logic programming approaches

to modularity, namely the algebraic, the logical and the syntactic approach.

Afterwards, the relations between logic and objects are brieffy described.

4.L Introduction

Module systems are an essential feature of programming languages, namely because be-

sides structuring programs they also allow the development of general purpose libraries,
therefore code re-use.

A modular extension to logic programming has been subject of research over the last
decades. In a broad sense one can distinguish three different approaches to modularity:
the algebraic, the logical and the syntactic. The algebraic approach started with work
by O'Keefe [O'K85] and considers logic programs as elements of an algebra, whose

operators are the operators for composing programs. The logical approach is based on
a work of Milier [Mil86, Mil89a], and extends the Horn language with logic connectives

for building and composing modules. Finally, the syntactic approach (see [HF06] for a
recent overview and proposal of such approach) addresses the issue of the global and
flat name space, dealing with the alphabet of symbols as a means to partition large
programs.

In this chapter, and for completeness reasons, we present a brief overview of these

approaches where the algebraic (Sect. 4.2) and logical (Sect. 4.3) overview follows
closely [LM94, BLM94]. Although Contextual Logic Programming fits into the log-
ical category, due to the relevance to this work we decided to present a very brief
presentation here and dedicate an entire chapter (5) to its description.

This chapter is organised as follows: in Sect(s). 4.2, 4.3 arrd 4.4 we review the algebraic,

37

38 CHAPTER 4, MODULAR LOGIC PROGRAMMING

the logical and the syntactic approach, respectively. In Sect. 4.5 we relate with Object-

Oriented concepts and frameworks. Finally, in Sect. 4.6 we state some conclusions.

4.2 Algebraic Approach

The algebraic approach started with the work of O'Keefe [O'K85] and the main idea

behind this proposal is that a logic program should always be understood as part of

a system of programs. He provided an algebraic approach where a logic program was

viewed as an eiement of an algebra and composition operators over that algebra. This
program composition approach has several benefits, namely:

o it is a powerful tool for structuring programs without any need to extend the

theory of Horn clauses;

it supports the re-use of the same program within different composite programs;

it is highly flexible since new composition mechanisms can be achieved by in-

serting the corresponding operator in the algebra or by combining the existing

ones;

it allows one to model powerful forms of encapsulation and information hiding

when coupled with mechanisms for specifying the interfaces between components.

4.2.L The Algebra of Programs and lts Operators

The programs of the algebra are regular definite logic programs and we will consider

three algebraic operators: union (U), closure (-) and overriding-union (<). The union

of two programs stands for taking the set-theoretic union of their clauses; the closure

of a program makes the resulting program visible to others only in terms of its logi-

cal consequences (encapsulating the program's intensionai knowledge); the overriding

union of P and Q e (Q) restricts the union of those programs to the case where the

definitions in P override the corresponding definitions provided in Q.

These operators composition will be denoted with the extension formulas defined by

the following productions:

E::: PlEuElE. lE<E

where P stands for the name of a logic program.

4.3. LOGICAL APPROACH

The immediate consequence operator can be taken as the denotation of a program in

order to provide the semantics for the programs and for the composition operators

(see [BLM94] for the detailed definition).

Since the notion of program equivalence induced by the immediate consequence op-

erator is essentially operational, other more abstract semantics can also be provided

(see [BLMea]).

Finally, operators can be composed in order to obtain more complex scope policies.

Typical examples are the operators for nested composition and static or dynamic

inheritance-based compositions.

4.3 Logical Approach

One criticism made to the algebraic approach is that the modular composition chosen

for a top-level goal is used for all its sub-goals, i.e. it's not possible to dynamically

modify the structure of moduies and evaluate a sub-goal in a collection of modules dif-

ferent from the one associated with the top-level goal. The logical approach overcomes

this restriction by enriching the language with operators for building and composing

modules that modify the language's evaluation procedure.

Following [BLM94] the operational semantics of the logical extensions proposed in

this section are defined proof theoretically where the associated proof-relation will be

presented in terms of the corresponding inference system in the sequent calculus. Each

sequent is denoted as pairs of the form A l-- f where the antecedent A and the succedent

f stand for sets of formulas and such sequent states that there exists a proof from the

antecedent A to some of the formulas in the succedent f .

Proofs are defined constructively by composing inference figures of the form:

uryer sequent(s)

louter sequent

4.3.L Embedded Implications

The seminal work of Miller [Mi]86] proposed a notion of modular programming based

on the use of embedded i,mpli,cati,ons D > G where D and G stand respectively for

definite clauses and goals. The Horn clauses extended with i,mpli,cati,on goals can be

defined as:

39

40 CHAPTER 4. MODULAR LOGIC PROGRAMMING

D::: AIDADIYTDIG)A
G::: TlAlGAGllrGlD)G

where T and A denote, respectively, the distinguished formula true and an atomic
formula. The intuition behind implication goal is that querying a program P with
the goal D : G amounts to requesting that the proof of G to be drawn from P
by assuming D as further hypothesis. This mechanism is similar to the program

composition presented in Sect. 4.2.1, nevertheless the main difference between them is

that in the former the program structure is static during the evaluation of a goal and
in the latter it is dynamic, as intended.

The implication goal can be formalised by the following inference rule:

(AuGMENrt #3#
The inference rules for the remaining goals are the usual ones:

(succESS)
2, e 1 (AND)

P I GrP I G2

P I Gr AGz

(TNSTANCE)T# (BACKCHAIN) ffi
with the condition G) A e lPl" for backchain.

In this approach, modules can be introduced as named collection of clauses and pro-

grams can be regarded as collections of modules.

Encapsulation and Scope

Embedded implications also allow us to model forms of encapsulation and scope. To

illustrate it let us consider the list-reverse predicate taken from [BLM94]:

4.3. LOGICAL APPROACH

Example L Li.st-reuerse pred'icate wi,th embedded i,mpli,cati,ons:

Vr,y reu(r,y) <- {Yl reu{l),l,l).
V r, I 1, 12, k r eu 1(lrll1), 12, k) * r eu1(\, 12, frlkl) .

\ > reu{r,y,ll)

In this example the definition of the auxiliary predicate (reu) is encapsulated in the

embedded implications. Therefore, the clauses of. reul are local to the deflnition of the

reu predicate.

Parametric Modules

Using embedded implications with free variables one can also account for the notion

of parametric modules. As an iliustration, consider a module named A that contains

the clause
=r

(D(r) > G(r)). Since the variable r is free, we can refer to this module

by Ma(r), i.e. the arguments for the module name designate the parameters of this
module.

Variable Inheritance

Embedded implications with free variables can also be employed to model forms of
variable inheritance between nested scopes:

Example 2 L'ist-reuerse predi,cate wi,th free uariables:

Yr,,y reu(r,y) <- {reu2(ll,y).
Y r, \, 12 reu2(lrllr], 12) *- reu2(\,, l*llr)).

\ > reu2(r,ll)

In this example, the bi,ndi,nq of the variable y is propagated from the nested definition

to the outer definition. Moreover, variable r of the rule in the nested definition is

different from variable r in the outer definition.

4.3.2 Lexical Scoping

Giordano et al. [GMR88] provide a notion of leri,cal scope that allows one to determine

the set of formulas for reducing each goal by looking at the syntactic structure of a pro-

4L

42 CHAPTER 4, MODULAR LOGIC PROGRAMMING

gram. These authors consider a diflerent interpretation for the embedded implications:
assume that P* is the set of atomic consequences of P, i.e.

P* : {A I A is atomic andP I A}

the following rule formalises their proposal:

P-UDIG
PID)G

The main difference w.r.t. the (AUGMENT) (see page 40) rule is that the body of
D depends on 2 but not vice-versa. Therefore ail the references to a predicate in the
outer scope P can be bound leri,cally to the definitions occurring in that scope.

Finally, in order to avoid the (potentially expensive) computation of P*, Giordano et
al. provided an equivalent proof system with a more complex structure for sequents

and where the antecedents of a sequent forms a stack (as opposed to set) of clauses.

(AND,tk) t+*ift (rNSrANCE"tk) +#
(BACKCHAIN.tk) (AUGMENT"tk)

The conditional stipulation of (BACKCHAIN"Ik) is that the clause G : A used to
backchain on A belongs to P,i, the top of the stack in the antecedent of the upper
sequent. Moreover, one notices that lf i < n, this inference rule shrinks the program

stack therefore reducing the definitions available for subsequent backchaining steps (in
the same nesting level). On the opposite side, the (AUGMENT,1I) rule increases the
stack size by pushing the new scope D on top of the current stack.

As we shail see, a similar approach is used for the proof system of Contextuai Logic
Programming (see Sect. 4.3.4).

4.3.3 Closed Scope Mechanisms

Here we provide an even stronger notion of scope where the meaning of the nested

scope D doesn't depend on the meaning of the outer scope associated with D I G
(as it happens in all the previous proposals). The following inference rule accounts for
such a notion of scope:

DIG
PID)G

The semantics of this rule is the same as that of ihe demo predicate defined bv Bowen

and Kowalski in [BK82].

4,3, LOGICAL APPROACH

4.3.4 Contextual Logic Programming

Although we provide a very thorough description of Contextual Logic Programming

(CxLP) in Chap. 5, for completeness of the comparison with other logical approaches,

we present a brief description of this language. The interpretation of the implication
goal in CxLP also models a Iexical notion of scope, nevertheless the difference of the

evaluation of the implication goal D) G (or D > G in the CxLP notation) is that
the extension of the search space is non-monotonic, i.e. the definitions coming from

the nested scope D override the corresponding definitions provided by the outer scope.

To model this behaviour we can consider the following inference rule:l

(AUGMENT>>)
D<P"IG
PI_D>G

From the interpretation of this rule we can state that the nested scope D depends on

the outer scope P only for those definitions which are not local to D.

Using proof rules similar to the ones we saw for F"17, (see Sect. 4.3.2) we can describe

the provability relation for CxLP (denoted by F;) by:

(BACKCHATN>>)
Pr,l"'lPtl>>G
P"l"'lPtl-->>A

imposing that P,i be the top-most component of.Pn l. . .l P, which contains a definition

(G) A) for the predicate symbol of A (in l-,17, the choice of.P6 was non-deterministic).

Returning to the iist-reverse given in Example 2, consider the CxLP version:

Example 3 Li,st-reuerse i,n Contertual Logi,c Programmi,ng

Vr,y reu(r,y) +- {reu(ll,y).
Y r, ly, 12 r eu ([rll1], lr) - r eu (\, lrllrD .

\ > reu(r,ll)

The program of the example above is very similar with the one that we saw with in
Example 2 (see page 41). The difference is that now there is no need to rename the

nested predicate since the override semantics ensures that the inner definition of.reuf2

is the one that is used to solve rea(r,ll).

43

lThe overriding-union operator (<) was defined in Sect. 4.2.1.

44 CHAPTER 4. MODULAR LOGIC PROGRAMMING

Overriding and Dynamic Scope

Mello et al. [MNR89] proposed an alternative semantics for extension goals that com-

bines the overriding semantics of CxLP with dynamic scope. This semantics can be

described by the following proof rule:

D<PIG
PID>G

In the rule above 2 stands for a set (as opposed to a stack) of clauses, where the
dependency between D and P is again bi-directional but constrained by virtue of the
restricted form of union provided by the overriding-union operator (<).

4.3.5 Lexical Scoping as Universal Quantification

In [NM88] the authors propose an extension of the language presented in Sect. 4.3.1 in
order to incorporate universal quantification of goals, i.e.

D ::: AIDADIYTDIG)A
G ::: T I AIG AG llrG I D:G lYrG

The formulas built according to the rules above are called Heredi,tary Harrop Formulas.

Due to the universal quantification, the sequent proofs for this language need to
represent the domain, i.e. are of the form E;P l- G where X is the signature of
the current domain. Additionally to the sequents we need to add the following rule to
the proof system:

(GENERICV)
x + {c};P ty Glrlcl

E;P tsv YrG

where c / E,, i.e. (GENERICv) extends the current signature with a new constant

(c). Therefore, universally quantified embedded implications provide a mechanism to
introduce constants with local scope.

Finally, Miller and Nadathur [NM88, Mil8gb] also propose an extension called Hi,gher-

Order Heredi,tary Harrop Formulas that allows universal quantifiers over the predicate

symbols that occur in the embedded implications. This predicate quantification en-

compasses an overriding mechanism similar to the one that we saw with the operator

) of Contextual Logic Programming.

4,4. SYNTACTIC APPROACH

The)Prolog Module System

Higher-Order Hereditary Harrop Formulas is the underlying logical foundation of the

declarative language .\Prolog [NM88]. Each module system of this language [Mil93]
contains three parts: header, preamble and declarations and clauses. The header stated

the module name being defined, the preamble (optional) declares the other modules

that can be accumulated or imported and the remaining part of the module can contain

signatures declarations and program clauses. Modules can accun'Lulate or i,mport other

modules. If a module nodl contains the line

accumulate nod2 nod3.

the intended meaning is that the clauses in mod2 and nod3 are made avaiiable at the

end of the clauses in mod1.

If a module modl contains the line

import mod2 mod3.

modules mod2 and mod3 are made availabie (via implications) during the search for
proofs of the body of clauses listed in mod1. To better grasp the dynamic semantics of
i,mport vs accun"Lulate see [Mii93].

There are multiple implementations of this language, Teyjus2 being the most actively
supported.

4.4 Syntactic Approach

Initially Prolog systems had a global and flat predicate name space, leading to several

difficulties specialiy when developping large applications. Modules in current Prolog

systems address this issue. Paradoxically, although there is a standard for Prolog

modules [fS00] almost each Prolog system has its own and incompatible module spec-

ification.

There are two types of modules systems: name-based and predicate-based. In the
former each atom is tagged with the module name, with the exception of those atoms

that are defined as public. In the latter, each module has its own independent predicate

name space.

One great disadvantage of the name-based approach is that all datais local to a module,

therefore atom f oo from module m1 is different from atom f oo in module m2. Of course

45

2 See http: //teyjus.cs.umn.edu/.

46 CHAPTER 4. MODULAR LOGIC PROGRAMMING

that this feature poses several difficulties) even for developping simple programs based

on modules.

One well known problem of an independent name space for each module (predicate-

based approach) is related to meta-predicates such as call(Goal) that have to know

in which module the Goal must be resolved. Moreover, the call predicate interferes

with the protection of the code, an essential task of a module system. In [HF06]
the authors take a further step down and distinguish between the called module code

protect'ion (only the visible predicates of a module can be cailed from the outside) from
the calli,ng module code protection (the called module does not call any predicate of
the calling module, as they are not visible3). Furthermore, they classify several Prolog

systems in terms of called/calling module code protection and propose a formal module

system with both forms of code protection.

In this section besides the ISO standard for modules we also present a brief overview

of several Proiog systems that address the issue of modularity. As we shall see, almost

all these systems are predicate-based,a i.e. they prefer to have global data and deal

in some way with the problem of meta-predicates. Wielemaker [Wie97] points out a

justification for this (almost) unanimous preference: it is much more frequent to pass

data across modules in program than writing meta-predicates that have to be used

across modules.

4.4.1 Prolog Modules: the ISO Standard

According to the ISO standard proposal for Prolog modules [fS00], a module is a named

collection of procedures and directives together with provisions to export some of the
procedures and to import and re-export procedures from other modules. A module

name M can be used to qualify terms T, leading to a term whose principal functor is

(:) /2, i.e. M: T.

Since this is a predicate-based approach a special attention is given to meta-predicates.

Namely, it defines lhe calli.ng contert as the name of the module from where a call is
made together with the notion of meta-procedure and meta-variable where the former is

a procedure whose actions depend on the calling context and the latter is a variable used

as argument of a meta-procedure which will be subject to module name qualification

when the meta-procedure is activated.

The standard also defines that procedures can be (re-)exported and, of course, imported

by modules. Moreover, such actions can be selective meaning that only specified

3Nevertheless one must consider the exception where calling a non-exported predicate is indeed

the intended behaviour as it happens for instance in the implementation of the predicate forall/2.
aThe exception to the rule is the name-based XSB.

4.4, SYNTACTIC APPROACH

procedures are exported/imported.

Moreover, two important notions are defined in this standard: accessi,bi,li,tg and ui,si,bi'li,ty

of procedures. A procedure is ui,si,ble in a module M if it can be activated from M without
using qualification. A procedure is accessi,ble if it can be activated with module name

qualification.

Finatly, ISO doesn't provide any sort of module code protection although it allows an

extension that hi,des certain procedures defined in a module M so that they cannot be

activated, inspected or modified except from within a body of the module M.

4.4.2 Implementations

Ciao Prolog

The Ciao Prolog System [BCC+97] is a predicate-based Prolog where the predicates

visible in a module are those defined in that module, plus the predicates imported

from other modules (these predicates must always be referred with the module name

as prefix, i.e. Module:Predicate). The default module of a given predicate name is

the local one if the predicate is defined locally, else it is the last module from which the

predicate is imported. Finally, only predicates exported by a module can be imported

into other modules. All predicates defined in files with no module declaration beiong to
a speciai module called user, and all are implicitly exported. Every user or module file

implicitly imports all the builtin modules. These aspects accommodate compatibility
with traditional module-less Prolog.

Before calling meta-predicates, Ciao Prolog translates the meta-arguments into an

internal representation containing the goal and the context in which the goal must be

called, therefore correctly selecting the context in which the meta-data must be called.

Ciao observes both forms of module code protection, i.e. called and calling module

code protection.

ECL,PS"

According to [Aea07] ECLdPS" (ECLdPS" Common Logic Programming System) is

a Prolog based system whose aim is to serve as a platform for integrating various

Logic Programming extensions, in particular CLP. It provides a module system that
follows most of the ISO directives, namely it supports (re)exporting and importing
predicates. An exported predicate is accessible everywhere although it may require

explicit module name qualification via : /2. Meta-predicates are declared by means of
the : - tool directive. Besides the usual qualification, the system also provides the

47

48 CHAPTER 4. MODULAR LOGIC PROGRAMMING

construct call(GoaI)@Modu1e that (in some situations) can be used to access non-
exported predicates. Nevertheless, once a module implementation is stable its possible

to lock i,t and after that not even call(GoaI)@Module can access to the hidden parts
of the module, i.e. Iocked modules provide both forms of code protection.

Mercury

Mercury [F. 06] is an efficient, purely declarative logic programming language. It is

touted by its proponents as a successor of Prolog that is a syntax for first-order logic
augmented with types and modes. Mercury supports programming-in-the-large: the
module system is flat and loosely based on the module system of imperative languages

such as Modula-2. A module:

starts with a module declaration directive,

is followed by an interface section where the exported items are declared,

ends with an implementation section that contains the definitions of the exported

entities and the declarations and definitions of entities used only within the
module.

Mercury protects module code: a module cannot get access in any way to the entities
private to another

SICStus Prolog

The module module system of SICStus Prolog [The07] is modeled after the Quintus
Prolog module [Lab03] and is described as:

procedure based;

flat, i.e. aII modules are visible to one another;

o non-strict, i.e. the normal visibility rules can be overridden by special syntax
(u: e).

Due to non-strictness there is no called module code protection: the special syntax
allows calling non-exported predicates of a given module. Although it is possible to
declare meta-predicates and corresponding meta-arguments that must be module name

expanded, one can use a similar expansion to access any predicate of the cailing module,

therefore there is no calling module code protection in SICStus.

4,4, SYNTACTIC APPROACH

SWI-Prolog

SWI-Protog [Wie97] has a module system where predicates can be exported (using

the module directive) and imported (by means of predicates use-module/[1,2] or

inport/1). It has two special moduies: sgstem and user. The first module contains all

built-in predicates and the second forms the initial workspace of the user. Moreover, to

avoid explicitly importing predicates such as system predicates, it is assigned a default

module to every moduie: the default module of user is system and all other modules

import from user.

In order to work with meta-predicates in modules, SWI-Prolog introduces the notion

of" contert module for active goals: by default is the definition moduleb of the pred-

icate running the goal; for meta-predicates is the context module of the goal that
invoked them. This mechanism is called module transparenf and differs from the

meta-predicate/1 of SICStus (see [Wie97] for a comparison). This module system

doesn't ensure any kind of module code protection.

XSB

XSB's [SSW+07] module system is fi,at (no module nesting), file based (one module

per file) ar..d name-based where any symbol in a module can be imported, exported

or be a local symbol. Moreover, all non-predicate symbols are assumed to be global

whereas predicate symbols are assumed local to that model unless declared otherwise.

Nevertheless, symbols cannot be exported.

A file is treated as a module if it has one or more erport declarati,ons. Since there is no

module directive, the module name is equal to the base file name.

Finally, XSB fully satisfies the code protection property: the meta-call of a term

corresponds to the call of the predicate of the same symbol and arity as the module

where the term has been created.

YAP

YAP [YAP06] is a high-performance Prolog compiler that implements a module system

compatible with the Quintus Prolog [Lab03] modules. Like SICStus, the module system

is predicate-based, flat and non-strict. Therefore, YAP has no module code protection.

There are two special modules: default module user to where new predicates belong

and pri,mi,ti.ue modrle to where system predicates belong. Besides nodule/{l ,2,3}
declaration, YAP has also meta-predicate/7 directive to state that some arguments

49

sModule in which the predicate was originally defined.

50 CHAPTER 4. MODULAR LOGIC PROGRAMMING

of a procedure are goals, clauses or clauses heads, and that these arguments must be

expanded to receive the current source module.

4.5 Logic and Objects

Modularity provides concepts that are similar to some of the core ideas in Object-
Oriented programming: for instance, [AD03b] shows how conterls (see Sect. 4.3.4) can

be used as objects.

Due to this proximity between Object-Oriented and Modularity, for completeness

reasons we decided to include a description of how embedded implications can be used

to model Object-Oriented concepts such as inheritance. Finally, in order to provide a

practical point view, we briefly describe an object-oriented extension of Prolog called

Logtalk.

4.5.L Object-Oriented Programming and Embedded Implica-
tions

According to [BLM94]6 the integration of OO and logic programming paradigms can

be considered from two different approaches:

1. one approach started with the work of Ait-Kaci and Nasr on LOGIN [AKN86].
This language can be described as a iogic language with inheritance where classes

and objects are represented as compound terms whose arguments designate the
objects attributes.

2. the other approach started with McCabe's Class Template Language [McC92]
and is based on the idea of representing an object as a first-order logic theory.

Following the second approach, classes can be introduced as parametric modules whose

parameters act as (stateless) instance variables in conventional OO languages. More-

over, a message O : G requesting that G be evaluated in object O can be modeled

AS:

OlroG
OlooO:G

6This subsection follows closely this reference.

4,5. LOGIC AAID OBJECTS

lnheritance

Considering the approach that represents an object as a first-order logic theory, Mon-

teiro and Porto in [MP90] divide inheritance into two kinds: semantic and syntactic.
In order to better define these types of inheritance consider two units u and v such that
u isa v. With the semantic (also called relational or predicate) we can consider that
the compositionality is at the semantic ievel by using relations from the model of v in
order to construct the model of u. If the inheritance is syntactic, one must compose

syntactic definitions of v and u in order to build the model of u.

Another orthogonal concept also related to inheritance presented in [MP90] was the

mode of inheritance: extension or overriding. These concepts are similar to the

algebraic operators union (U) and overriding-union (<) presented in Sect. 4.2.1.

One can aiso use embedded implications to model inheritance, where the message-sent

O : G causes the evaluation of G to take place not simply in O but in the program

obtained by the composition of O with all of its ancestors in the object hierarchy.

Consider the hierarchy O, i,sa On; ... Oz i,sa Or and the message-sent 01 : G. A
system with syntactic overriding inheritance is modeled by means of the following proof
rule:

Oi4Oi-r4...4OtlooG
Htsoo01 :G

where I/ is the current object hierarchy.

A system with semantic overriding inheritance can be modeled by the rule:

(Oi < (Oi-r < (. .. < OI) . ..).). F,, G
HlooOi:G

4.5.2 Logtalk

Logtalk [Mou03] is an object-oriented extension of Prolog. As expected, this language

allows the definition of several namespaces. It supports both prototype and class-based

system and objects can have multiple independent hierarchies. Inheritance and object
predicates can be private, protected or public. Objects can have parameters [Mou00],
nevertheless the access to parameter values is through a built-in method.T Aithough
private predicates enable calling module code protection, meta-predicates can access

the private predicates of the calling object, therefore there is no calling module code

protection.

51

Tlnstead of making the parameters scope global over the whole object.

52

4.6

CHAPTER 4. MODULAR LOGIC PROGRAMMING

Conclusions

In this chapter we presented an overview of the main approaches to modularity in
Logic Programming. Namely, we described lhe algebrai,c approach that considers logic

programs as elements of an algebra whose operators are operators for composing pro-

grams; the logi,cal approach that enriches the language with operators for building and

composing modules that modify the language evaluation procedure and the syntacti,cal

approach that addresses the issue of the global and flat name space, dealing with the

alphabet of symbols as a mean to partitionate large programs. To further perspec-

tive this issue we also included the Object-Ori,ented approaches in LP, since OO and

modularity intersect in several ways. Finally, although most implementations/systems
herein described follow the syntactic approach, there are also examples of systems that
use the OO or the iogical approach.

Chapter 5

Contextual Logic Programmit g

This chapter presents a detailed overview of Contextual Logic Programming, namely

its language, operational and declarative/fix-point semantics. It also describes

several extensions to the base language and an optimisation through abstract

interpretation. Finally, the virtual-machine-based implementations CSM (Contexts

as SICStus Modules) and GNU Prolog/CX are reviewed.

5.1 Introduction

Contextual Logic Programming (CxLP) is a modular extension of Horn clause logic

proposed by Monteiro and Porto [MP89, MP93l. The CxLP "extension goal" can be

regarded as a non-n'Lonotoni,c version of Miller's "implication goal" [Mil86, Mil89a].1

The extension goai is denoted with the) operator and D > G (pronounced extend

with D for goal G) is derivable from a program P if G is derivable from AU D and

A is derivable from P, for some finite set A of atoms for predicates not defined in D.
Therefore) provides a sort of lexical scoping for predicates: predicates in G which are

defined in D are bound to those definitions, the others can be obtained from program P.
Besides lexical scoping, CxLP also accounts for contextual reasoning that is widely used

for several Artificial Intelligence tasks such as natural language processing, planning,

temporal reasoning, etc.

Work by Abreu and Diaz [AD03a] presented a revised specification of CxLP together

with a new implementation for it and explained how this language could be seen as a

shift into the Object-Oriented Programming paradigm.

In this chapter we start by defining the syntax of the language (Sect. 5.2), afterwards

we present its operational (Sect. 5.3) and corresponding fix-point semantics (Sect. 5.4).

rsee Sect. 4.3 for an overview of logical approaches to modularity.

53

54 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

Next a possible optimisation through abstract interpretation is given (Sect. 5.6). Fi-
nally, we briefly review two proposed systems for CxLP (Sect. 5.7), namely CSM

(Contexts as Sicstus Modules) [NO93, NO] and GNU Prologlcx [AD03a].

5.2 The CxLP Language

The vocabulary of Contextual Logic Programming, besides the usual sets of variables,

constants, functions and predicates symbols also contains a set of un'it names. Although
we are going to see a formal definition of unit for now assume that it stands for a finite
set of Horn clauses, i.e. the unit represents the concept of "module".

Definition 5 (Vocabulary of CxLP) The uocabulary of Contertual Logi,c Program-

m'irr,g contai,ns the followi,ng fini,te and pai,rwi,se disjoi,nt sets:

o Var of uari,ables

o Fun of functi,ons

o Pred of predi,cates

. Un of uni,t names

Terms, atomic formulas and clauses are defined in the usual way, with the only differ-
ence that clauses can have ertens'ion formulas in their bodies:

Definition 6 (Extension Formila) An ertensi,onformulai,s aforrnulau) G where

u i"s a uni,t name (u e U") and G i,s a fini,te conjuncti,on of atomic or ertensi,on formulas.

Using the definitions above we are now in position to provide a more formai definition
of units:

Definition 7 (Unit) A uni,ti,s aformula of theformu:U, whereue Un andU i,s

a fi,n'ite set of clauses. We call u the nan'Le of the uni,t and U i,ts body (also denoted bg

lul). Moreouer, the set of predi,cates defi,ned i,nU i,s denoted bA ll"ll (the sort of u).

Finally, a system of un'its is a set Z,/ of units such that no two distinct units in U have

the same name.

5.3, OPERATIONAL SEMANTICS

5.3 Operational Semantics

The system of units that we saw above is a static concept of a program. The dynamic

view of a program is the derivation of formulas in contexts. Context names are arbitrary
sequences of unit names (Cn : U"-). The empty context is represented by .\ and the

context that results from extending the context C e Cn with unit u € Un is represented

by uC.

The operational semantics is presented by means of derivations. For self-containment

reasons, we explain briefly what is a derivation and this description follows closely the

one presented in [MP93l.

Derivations are defined in a a declarative style, by considering a derivation relation and

introducing a set of inference rules for it. A tuple in the derivation relation is written
AS:

u,,c I Glel

where Uisasystemof units, Cacontextname, G agoai and0 asubstitution. Since

the system of units remains the same for a derivation, we will omit U in the definition
of the inference rules. Each inference rule has the following structure:

Antecedents
{Condi,ti,onsConsequent

The Consequent is a derivation tupie, lhe Antecedents are zero) one or two derivation
tuples and Condi,ti,ons are a set of arbitrary conditions.

The inference rules can be interpreted in a declarative or operational way. In the

declarative reading we say that the Consequent holds if the Condi,tions are true and

the Antecedents hold. From a operational reading we get that if the Cond'iti,ons are

true, to obtain the Consequent we must establish the Antecedents. A derivation is a
tree such that:

any node is a derivation tuple;

in all leaves the goal is null;

the relation between any node and its children is that between the consequent

and the antecedents of an instance of an inference rule;

all clause variants mentioned in these rule instances introduce new variables

different from each other and from those in the root.

55

1.

2.

3.

4.

56 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

The operation of the contextual logic system is as follows: given a context C and a
goal G the system will try to construct a derivation whose root is C I G [0], giving

0 as the result substitution, if it succeeds. The substitution d is called the computed,

answ er sub sti,tuti,on.

We may now enumerate the inference rules which specify computations. These rules

are based on the ones presented in [MPS9], that can be regarded as the base for the ones

in [MP93]. Together with each rule we will also present its name and a corresponding

number. Moreover, the paragraph after each rule gives an informal explanation of how

it works.

Null goal

cTZIa (5'1)

The null goal is derivable in any context, with the empty substitution e.

Conjunction of goals

c t Gllol C t G20 lo) (5.2)

first, and then the other in the

C I G1,G2l0ol

To derive the conjunction derive one conjunct

same context with the given substitutions.

Reduction

uCl(Gr,Gr...G)elo)
uC t Gleo)

I H *Gr,Gz...G"e lul

[0 : mgu(G,11)
(5.3)

(5.4)

If the unit at the top of the context (z) defines the predicate of the atomic formula
G, reduce such formula in the unit and derive the body of the clause used in the

reduction.

Extension Formula:

uC F G[0]

C t u> Gl?l

To derive an extension formula, derive the "inner" formula in the context obtained

by extending the current one with the unit name in the extension formula.

5.4. DECLARATTVE/FrX-POINT SEMANTICS

Context traversal:

57

(5.5)

When none of the previous rules applies remove the top element of the context,

i.e. resolve goal G in the supercontert, r.e. the context that results from removing

the top unit from the current context.

5.3.1 Application of the Rules

It is rather straightforward to check that the inference rules are mutually exclusive,

Ieading to the fact that given a derivation tuple C I Gl?) only one rule can be applied.

Moreover, the operational semantics of a goal G is the set of all substitutions d such

that) t Glq.

Finally, in [MP89] besides the top-down derivation above there is also a bottom-up
one. Since both approaches were proven equivalent and the bottom-up is similar to the

declarative reading of the inference rules presented, we considered the inference rules

above to be sufficient.

5.4 Declarative/Fix-Point Semantics

Similarly to the Herbrand interpretation of a first-order language, in CxLP the domain

of an interpretation is the Herbrand universe H, each function of arity n is interpreted

as a function from H" to 11. Nevertheless, instead of considering an interpretation as

an assignment of a subset of the Herbrand base B (set of all ground atomic formulas)

to every predicate symbol, CxLP interpretations associate unit names with functions
from 5c(B)2 to gr(B). For instance, u) G is true in a subset S of the Herbrand base,

from here on cailed si,tuati,on, if every formula in G is true in the situation obtained
from S by the transformation associated with z.

More formally, and considering P e Pred, S g 8,, Sp the restriction of ,S to P, i.e.

thesetof all p(h,...,tn) € Ssuchthatp€ P. Consideringalso ^9-p: Sp,s4-p,an
interpretation -I is an assignment, for each u e Un, of a continuous function:

u1 : gt(B-11,1) * fr(81"t)

C ts GIOI

ffij{ name(G) lll"ll

'fr@) is the powerset of B.

58 CHAPTER 5, CONTEXTUAL LOGIC PROGRAMMING

Moreover, the update of ,S c B by u e Un is:

Slul] : S-1,1 u z7(S-11"11)

Denoting S F, / by the fact that f rs true in S with respect to 1, the relation Fr is

defined by:

. ,S lr u: U rf. and only if S[ur] lr U

. S F, H *- 8,, where H +- B isground, if andonlyif Sl, U whenever SFr B

. S F, u) G if and only if Slurl lr G

. S F, g where g is a ground atomic formula, if and only if g € S

Similarly, an interpretation 1 is a model of a system of units U if. every unit in U is true

in every situation with respect, to I. Monteiro and Porto also proved that any system

of units has a minimal model and this model could also be obtained by means of a
fix-point operator (for the description of this operator see [MP89]). Finally, they a]so

showed that the operational semantics (see Sect. 5.3) and the declarative presented

herein are equivalent.

5.5 Extenslons

Several extensions were proposed to the basic theory above. In this section we present

a brief description of the extensions that are relevant for this work and that were the
subject of a recent revision of CxLP [AD03a]. A more formal and complete description

of all the extensions (including extensions for predicate hiding, two-level contexts, etc)

can be found in [MP89] and [MP93].

Parametrised Units
Unit parameters act as "global variables" for units and these parameters are

encoded as arguments of a term whose main functor is the unit name. Therefore

instead of referring to a unit with an atom we can use terms whose main function
is the unit name, such terms are called uni,t descri,ptor. To account for this
extension, several inference rules of Sect. 5.3 need an extra unification since now

unit descriptors (and therefore contexts) can have variables. For instance, the

ruie for conjunction of goals becomes:

c t Gi?) C0 t G20 lol
C I Gr,G2l1ol

(5.6)

5.6. OPTIMISATIOAIS

Since C may contain variables in unit descriptors that may be bound by the

substitution d obtained from the derivation of G1, we have that d must also be

applied to C in order to obtain the updated context in which to derive G20.

Context switch

c'ts Glo)
(5.7)

C I Ct :< Gl?l

The purpose of this rule is to allow execution of a goal in an arbitrary context,
independently of the current context. This rule causes goal G to be executed in
context C'.

Context inquiry

{e:mgu(X,C)

59

(5.8)
C I :< Xl?)

To complement the context switch operation, there is an operation which fetches

the current context. This rule recovers the current context C as a term and

unifies it with term X, so that it may be used elsewhere in the program.

5.6 Optimisations

One way to classify modular languages, according to [BCLM98] concerns the way in
which the set of clauses that define a goal are found. Considering the evaluation of a
goal g in a context C : lrn,.. .,ut),we have:

Dynamic scope rules: is a system in which the definition associated with each

predicate call is given by the clauses for g contained in the whole context C,
regardless of the unit where the call occurs.

Static scope rules: is a system in which the definition associated with predicate

call g occurring in the unit ui, is given by the clauses for g contained in the sub-

context [uo, . . ., u1]. The definitions visible from a unit u are therefore those found
in u and its ancestors in the context.

CxLP is a system with static scope rules, and a useful optimisation for these systems is
partial deduction or partial evaluation. One possible approach can be found in [BLM93]
where the authors assume that each goal goal is evaluated in a context and therefore
propose a transformation that's not only a function of the goal, but also of the initial

60 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

context where this goal has to be evaluated. This program transformation leads to a
new, stil modular program where some of (possibly all) the modules occurring in the

initial context are replaced by the specialised version.

Nevertheless, to make use of a partial evaluation based approach, one has to know

beforehand what the initial context and goal will be. If this knowledge is absent, this
optimisation cannot be applied.

For dynamic scope rules systems the optimisation proposed in [CLM96] is based on a

bottom-up abstract interpretation [CC92]. In that proposal an abstract transformation

function is presented, which returns sets of pairs (c, p) where c is a mi,n'imal context for

predicate p, r.a. any successfull derivation for an atom whose predicate is p must must

contain (at least) one of those minimal contexts. Moreover, this condition is necessary

but not sufficient since the computation with a minimal context may still fail, just not

because of undefined predicates.

5.6.1 Abstract Interpretation for Static Scope Systems

Although the proposal of [CLM96] was designed for dynamic scope ru]es systems like

the language of embedded i,mpli,cati,ons (see Sect. 4.3.1), in this section we are going

show that it can be applied to a static scope system such as CxLP. Before formally

developing our proposal, we start with the following motivating modular program:

:- unit(u1).
P :- q.

: - unit (u2)
q :- r.

: - unit (u3) .

r.

From the abstract analysis of [CLM96] we get pairs (c, p) where c stands for the minimal

context for predicate p. In this case we have:

({u1,u2,u3},p) u ({u2,u3},q) U (iu3},r)

Although in CxLP the order in which the units appears in the context is important,

we can state that the computation for p in a context without units u1, u2 and u3 will
certainly lead to a failure. Therefore, we claim that this method is also suitable for

optimising CxLP. Nevertheless, as the reader might have noticed, this way we also

allow the evaluation of p in contexts like [u2, u1 , u3J or [u3, u1 , u2] and this

ought to be avoided with a finer pruning mechanism.

To prove that this method can be applied to a static scope language we rely upon the

unifying formalisation presented in Sect. 4.3 (page 39) for embedded i,mpli,cat'ions and

CxLP. Returning to the formalisation of that chapter can be misleading since there the

OPTIMISATIOAIS

provability relation for embedded 'impli,cati,ons and CxLP was l- and F;,, respectively,

and in this chapter F stands for the provability of CxLP. The reason for that has

to do with the fact that in Sect. 4.3 there were several logical approaches (embedded

implications being the first); in this chapter, CxLP is the only language described.

Nevertheless, since we need the unifying framework of Sect. 4.3 we will return to that
notation.

Proposition L Gi,uen a goal G, a stack of clausesP and the setP' that results from
the uni,on of all the clauses i,n the stack P, we haue

PlrrG +P'lG

Proof: P l>> G is true if there is a tree of derivation tuples that starts with ? F; G,

the relation between two consecutive tuples is that between the antecedents and the
consequent of the inference rules above and where the goal of the last tuple is null.

The basic idea for this proof is to construct a derivation tree for P' I G using the
existing (by hypothesis) derivation for P l>> G. More specifically, we are going to
replace each inference rule used in the CxLP derivation by the equivalent embedded

implications rule.

Therefore the tree for P' l- G has P' I G as its root and to build the children of any
node consider the inference rule that was applied in the tree for P l>> G.

The ruies for (SUCCESS>>), (AND>>) and (INSTANCB,) can be trivially replaced by
the identical counterparts (SUCCESS), (AND) and (INSTANCE).

Both versions of the Augment have no conditions, therefore instead of (AUGMENT>)
we can use (AUGMENT), with the proper substitutions, i.e. lf P' l- D) G is the
parent, then its chiid is P' U D F G (instead of D I P F G).

It remains to verify v/e can replace (BACKCHAIN>>) by (BACKCHAIN). For that, one

must notice that the set of rules in the embedded implications increases continuously.
If (BACKCHAIN>) was used then there is a component in the stack that contains
a rule G s A, therefore from the monotony of embedded implications set of clauses,

we have that that G) A also belongs to the set that results from that stack, i.e.

(AUGMENT) condition is verified and therefore it can be used. n

In Table 5.1 we find a CxLP derivation and the corresponding embedded implications
one that iilustrates the proof procedure considered above.

61

62 CHAPTER 5, CONTEXTUAL LOGIC PROGRAMMING

CxLP Embedded impiications

) F {r} > ({q: -r} : q)

{.}u)l-{q:-r}rq
{q'-r}u{r}u)l*q
{q'-r}u{.}u)Fr
{q , -'} u {r} u,\ l- T
{q'-.}u{r}ulF

{q , -t}
{q ' -,}

{r}
{r} | .\ F;

Table 5.1: Derivation: CxLP and embedded implications

It follows from Proposition 1 that P' V G + P V>> G. Therefore, consider that we want

to verify if atomic goal G is true in the stack (context) P, r.e. P 12 G and that p is
the predicate of G. F\rrthermore, suppose also that P' is the (embedded implications)
program that results from the union of all the clauses in the P. If P' doesn't contains

any minimal context for p, them P' V G and therefore P l/2;, G.

5.7 Implementations

There are two main approaches to implement CxLP in a logic programming framework:

Prolog-based

Virt ual- machine- based

Meta-interpretation and translation to Prolog are two widely used techniques in Prolog-

based approaches. Although these systems are rather simple to implement, due to

efficiency reasons they aren't used to build real-world applications. Virtual-machine-

based implementations although more elaborate in development, are more efficient.

For a comparison between the approaches see for instance [DLM+92].

In this section we present a brief overview of the more relevant, at least to our

knowledge, virtual-machine-based implementations.

5.7.L CSM (Contexts as SICStus Modules)

The Contexts as SICStus Modules (CSM) system [DNO92] can be regarded as an

enhanced virtual-machine that exploits the program representation and the predicate

addressing mechanism of a modular Prolog programming system. As the name states

the modular Prolog system chosen was SICStus (see Sect. 4.4.2) and in this implementa-

tion, contexts are first-class objects which can be referred to by logic variables. Besides

) F; {r} >>

{r}l)F;
({q' -r} > q)

{q, -t} > q

{'}l}l-;,q
{r}l)F21 r
)F>>T

5.7, IMPLEMENTH?IO.NIS

the basic CxLP theory, CSM also implements two-level contexts, context enquiry and

context switch.

In [NO, NO93] the authors extend the implementation above in order to include

object-oriented abstractions and mechanisms such as state modification. In order to
incorporate the notion of update they make a clear distinction between deductive and

updating phases: the deductive activity isn't affect by the update actions it produces;

updates are backtrackable and just take place when the corresponding demonstrations

ends.

5.7.2 GNU Prolog/CX

GNU Prologlcx [AD03a] is a WAM-based approach, i.e. extends the standard Warren

Abstract Machine (WAM) [War83] with a minimal set of instructions and new data

structures in order to provide the CxLP characteristics. For a prior WAM-based

approach to CxLP see [LMN92].

Besides the basic CxLP theory, GNU ProloglcK presents several extensions such as

units arguments, two-level contexts, context enquiry and context switch. A full detailed

tutorial (A.1) together with its reference manual (A.2) can be found in Appendix A.

In [AD03a] the authors show that this compiler incurs a]ow overhead when compared

to regular GNU Prolog when the CxLP extensions are not being used. Moreover, they
also compare it to CSM (see Sect. 5.7.1) and state that the relative performance is
much better, allowing GNU Prolog/CX to have deeper contexts.

Finally, this system was used to represent and query ontologies [LFA07], to develop

University Information Systems [ADNO4] and applied for temporal representation and

reasoning (see Sect(s). 6.5 and 7.5, respectively).

University Employees

Using the syntax of GNU Prolog/CX consider a unit named employee to represent some

basic facts about university employees, using ta and ap as an abbreviation of teaching
assistant and associate professor, respectively:

: -unit (employee (NAME , P0SITI0N)) .

name (NAME) .

position(POSITI0N).

item : - employee (NAME, P0SITI0N) .

63

CHAPTER 5, CONTEXTUAL LOGIC PROGRAMMING

employee (bi11 , ta) .

employee (5oe , ap) .

The main difference between the example above and a plain logic program is the
first iine that declares the unit name (employee) along with the unit arguments

(IrtAuE, PUSITI0N). Unit arguments help avoid the annoying proliferation of predicate

arguments, which occur whenever a global structure needs to be passed around. A unit
argument can be interpreted as a "unit global" variable, i.e. one which is shared by all
clauses defined in the unit. Therefore, as soon as a unit argument gets instantiated,
all the occurrences of that variable in the unit are replaced accordingly.

For instance if the variable NAME gets instantiated with bill, it is as if the following

changes had occurred:

: -unit (employee (bi11 , P0SITI0N)) .

name (bitI).
position(POSITI0N).

item :- employee(bi1t, P0SITI0N).
employee (bi11 , ta) .

employee (joe, ap) .

Suppose also that each employee's position has an associated index (integer) that will
be used to calculate the salary. Such a relation can be easily expressed by the following

unit index:

: - uait (index (P0SITI0N , INDEX)) .

position (POSITI0N) .

index (INDEX) .

item : -
index (POSITI0N , INDEX) .

index (ta, L2) .

index (ap, 20) .

With the units above we can build the program P = {emPloyee, index}.

Given that in the same program we can have two or more units with the same name

but different arities, to be more precise besides the unit name we should also refer its

arity i.e. the number of arguments. Nevertheless, since most of the times there is no

ambiguity, we omit the arity of the units, without loss of generality. If we consider that

5.7. IMPLEMENTATIONS

employee and index designate sets of clauses, then the resulting program is given by

the union of these sets.

Contexts are implemented as lists of unit descriptors and each computation has a notion

of. its curyent contert. The program denoted by a particular context is the union of the

predicates that are defined in each unit. Moreover, we resort to the ouerride semanti,cs

to deal with multiple occurrences of a given predicate: only the topmost definition is

visible.

To construct contexts, we have the contert ertensi,on operation denoted by : > . The
goal U :) G extends the current contert with unit U and resolves goal G in the new

context. For instance to obtain Bill's position we could do:

?- employee(biII, P) :) item.

P=ta

In this query we extend the initial empty context [] 3 with unit employee obtaining

context [employee(bi11, P)] and then resolve query iten. This leads to P being

instantiated with ta.

Suppose also that the employee's salary is obtained by multiplying the index of his

position by the base salary. To implement this rule consider the unit salary:

: -unit (salary (SALARY)) .

item : -
position (P) ,

Iindex(P, I)] :< item,
base_satary (B) ,

SALARY is IxB.

base-salary (100) .

The unit above introduces a new operator (:<) called contert sw'itch: goal [index(P,
I)l :(item invokes iten in context [index(P, I)]. To better grasp the definition
of this unit consider the goal:

? - employee (bitI , P) : > (item, salary (S) : > item) .

Since we already explained the beginning of this goal, lets see the remaining part. After
salary/l is added, we are left with the context [salary(S), employee(bilI,ta)].

3In the GNU Prolog/CX implementation the empty context its not entirely empty since it contains

all the standard Prolog built-in predicates such as =/2.

65

66 CHAPTER 5. CONTEXTUAL LOGIC PROGRAMMING

The second item is evaluated and the first matching definition is found in unit salary.
Goal position(P) is called and because there is no rule for this goal in the current
unit (salary), a search in the context is performed. Since employee is the topmost
unit that has a rule for position(P), this goal is resolved in the (reduced) context
[employee(biII, ta)]. In an informal way, we queried the context for the position

of whom we want to calculate the salary, obtaining ta. Next, the index corresponding to
such position is computed, i.e. [index(ta, I)] :(item obtaining I = 12. Finally,
to calculate the salary, we just need to multiply the index by the base salary, getting S

= 1200 as answer and [salary(1200), emp]oyee(biII, ta)l as the final context.

5.8 Conclusions

In this chapter we reviewed the modular logic language called Contextual Logic Pro-

gramming, namely its syntax and semantics (not only the operational but also the
declarative/fix-point semantics). This thorough overview is motivated by the fact that
CxLP is the modular logic language used as a basis for this work.

We showed one possible optimisation of CxLP by means of abstract interpretation. It
is our opinion that implementing this optimisation (see [CLM96]) would incur a low

overhead and allow any implementation to avoid resoiving goals bound to fail because

of undefined predicates.

Finally, we reviewed the implementations CSM and GNU ProloglCX.A much deeper

description of GNU Prolog/CX is given (including a tutorial and reference manual in
Appendix A) because this system encompasses more features of CxLP and has better
performance than CSM.

Chapter 6

Temporal Reasoning in a Modular

This chapter merges the languages Contextual Logic Programming and Temporal

Annotated Constraint Logic Programming. It presents the constraint theory of this
combination together with its operational semantics. Afterwards, an interpreter
together with a compilation scheme a,re described. Finally, some compafisons

with the related approach Multi-theory Temporal Annotated Constraint Logic

Programming axe brought forward.

6.1 Introduction

It is our belief that not only is modularity a mechanism essential for real world appli-
cations, but also that the ability to represent and reason about temporal information
is obligatory for the vast majority of domains. Therefore the combination of these two
paradigms comes as a natural requisite for any language suitable for designing and

implementing Organisational Information Systems.

In this chapter we propose we propose to merge consolidated proposals for temporal
reasoning and modularity into a common language. More specifically, we combine

Temporal Annotated Constraint Logic Programming (an overview of TACLP was

presented in Sect. 2.3.4) with Contextual Logic Programming (an overview of CxLP
was presented in Chap. 5).

The choice for the modular logic language CxLP was motivated by the recent work of
Abreu and Diaz [ADO3bl that presented a revised specification of CxLP, together with
a native-code compiler for it, GNU Prolog/CX, itself based on GNU Prolog [DC01].
Besides providing a usable initial performance, this proposal introduces an enhance-

ment over the original Contextual Logic Programming of Monteiro and Porto which

Language

67

68 CHAPTER 6, TEMPORAL REASOI{ING IN A MODULAR LANGUAGE

has far-reaching consequences: the parametrisation of units and the use of unit-wide
logic variables.

TACLP was chosen because the annotations make time explicit but avoid the prolifer-

ation of temporal variables and quantifiers of the first-order approach [BMRTOI]. Aiso

of great importance was the fact that, besides an interpreter, there is also a compiler

from TACLP to CLP, allowing its use in real world applications. Finally, the language

Multi-theory Temporai Annotated Constraint Logic Programming (MuTACLP) (see

Sect. 6.6.1) is one of the few languages that combines temporal reasoning (TACLP
also) with a mechanism for structuring programs and combining different knowledge

source in the style of Brogi et al. [BMPT94]. Therefore, taking preference for TACLP
makes the comparisons with similar approaches more clear.

This chapter is organised as follows: we start by building in a incremental way the
language that extends CxLP with temporal annotations. We aiso present several

illustrative examples (Sect. 6.2). Afterwards, we deal with the semantics of this pro-

posal, more specifically, the constraint theory (Sect. 6.3) and the operational semantics

(Sect. 6.a). An implementation with an instantiation for the time point domain follows

in Sect. 6.5. Then we give some comparisons between our framework and related work
(Sect. 6.6) and finally, we present some conclusions in Sect. 6.7.

6.2 CxLP with Temporal Annotations

As mentioned, Temporal Annotated Constraint Logic Programming is an instance of
annotated constraint logic (ACL), designed for temporal reasoning. The inference rules

for annotated formulas were given in Sect. 2.3.4 (page 13).

Following an incremental approach, in order to combine temporal annotations with
Contextual Logic Programming we start by adding constraints to CxLP turning into
what can be designated as CCxLP (Constraint Context Logic Programming), i.e. we

add a distinguished class of predicates called relati,onal constrai,nts and a distinguished
class of of interpreted functions called functi,onal constrai,nts. Afterwards, we allow

formulas to be annotated with a distinguished class of constraint terms called o,nno-

tati,on terms obtaining what will be called Annotated Constraint Contextual Logic

Programming. In this phase, as in ACL, we have the partial ordering f as a relational

constraint and the least upper bound l--l as a functional constraint, along with a
constraint theory (see [Friig4b]) as well as inference rules for annotations (already

presented in Sect. 6.6.1). Instantiating to the temporal case, we consider the annotated

formulas A at t as meaning that the formula A is true at time point t1 and relate

l"Indivisible, duration-less instant or moment in time" [Ftiig4b]

6.2. CXLP WITH TEMPORAT AAII\IOTATIOIVS

periods to convex sets of points by the annotations A th I and A in I, meaning that
A holds throughout the set I (i.e. at euery time point in I) and that A holds at

some time point(s) in I, respectively. The resulting formalism will be called Temporal

Annotated Constrai,nt Contertual Logi,c Programmi.ng (or TACCxLP for short).

Leaving aside the (general) constraints and focusing only on the temporal aspects,

from a syntactical point of view we add the possibility of CxLP atoms having one

of the following temporal annotations: {at t, th I, j.n I}. As an illustration of
this extension consider one possible temporal version of the unit enployee from the

example presented in Sect. 5.7.2 (page 63):

: - unit (employee).

employee (bi11 , ta) th 12004, infl .

employee (joe , ta) th 12002, 20061 .

employee(joe, ap) th 12007, infJ.

The main difference is that now each basic fact has one temporal annotation. For

instance the last fact of employee states that joe is an ap (associate professor) since

2007 (the inf stands for oo, i. e. a time point that is later than any other). Moreover,

in this case there is no use for unit arguments. In a similar way we can define unit
index to account for the temporal evolution of the careers salary index (which could

be updated to keep up with inflation):

: - unit (inaex) .

index (ta, 10) th [2000 , 2005] .

index(ta, t2) th [2006, inf].
index (ap, 19) th [2000 , 2005] .

index(ap, 20) th [2006, inf].

The temporal version of unit salary has the following structure:

: - unit (salary) .

salary(N, S) th J :-
IemployeeJ :(employee(N, P) th J,
Iindex] :< index(P, I) th J,
base-salary (B) , S 1s B*I.

base_salary (100) .

and states that the rule to calculate the salary is time dependent: the salary through
a given interval J is calculated by querying the employee position and corresponding
index during such interval. Then, the salary is obtained by multiplying this index by

70 CHAPTER 6. TEMPORAT REASOI\I/I\IG / I A MODULAR LANGUAGE

the base salary.2 As an illustration consider the following goal to discover joe's salary

in [2005,2007):

?- salary :> salary(joe, S) in [2005, 2007).

S=1000;S=1200;S=2000

The reader should notice that the salary of a teachi,ng ass'istant (ta) was raised in 2006

(S = 1OOO and S = 1200) and that joe achieved the position of. associ,ate professor

(ap) in 2007 (s = 2200).

6.3 Constraint Theory

The constraint theory is identical to the one of TACLP [BMRT02], i.e. a constraint

domain for time points includes suitable constants for time points, function symbols for

operations on time points (".g., *,-, .. .) and the predicate symbol (, modelling the

total order relation on time points. This constraint domain is extended to a constraint

domain A for handling annotat'ions, by enriching the signature with function symbols

[., .], at, th, in, [J and the predicate symbol f. Moreover, assuming 11 (s1,

sr (sz and s2 /-12,the axioms for the predicate symbol f can be summarised as:

i,nlry,rrl = i,nls1, sz] f i,nls1, st) : at s1 : thlsy s1] r th[s1, sz] f thlry,r2l

Finally, the axioms of the least upper bound U (function symbol) can be restricted to:3

thls1, s2]t-lthfrl,rz) : thlsr.,rz] # s1 l rl,rr I sz, s2 <-12

6.4 Operational Semantics

To obtain the operational semantics of this language one needs to replace the inference

rules (r) and (!) of Sect. 2.3.4by their contextual versions, i.e. instead of annotated

atoms Aawe must have C I Aa.

ClAa'y.a
rule (r") CtsAa ClAli ^y:dr/

rule (u6r)CtAl ClAl
2Of course that it would be reasonable to annotate the base salary. However, doing so wouldn't

bring any novelty to the problem.
3The least upper bound only has to be computed for overlapping fh-annotations.

6.5. IAI?ERPRETER AAID COMPILER

Moreover, the inference rules of CxLP must be adapted to the case where literals can

be annotated. These rules can be obtained in a rather straightforward manner from the
ones for CxLP (see Sect. 5.3 on page 55) by substituting each goal G by its annotated
version Ga.

6.5 Interpreter and Compiler

Meta-interpretation and compilation are two widely used techniques to implement
logic languages. Fliihwirth [Ffii96] provides both an interpreter and a compiler for
TACLP where the compiler transforms TACLP into CLP. Moreover, the same author
in [F]ti94b] presents an efficient optimised interpreter for TACLP were only atomic
formuias can be annotated.

An obvious implementation of the proposed language can be obtained with a slight
modification of the compiler (interpreter) for TACLP in order to handle context oper-

ations (leaving them unchanged). Therefore, to get a full blown implementation it is
sufficient to define the constraint domain C for the TACLP, i.e. one has to define the
time point domain.

6.5.1- Time Point Domain

The main motivation behind our temporal data model was to be able to represent a

wide variety of notions of time, not only common ones such as the 24-Hour timekeeping

system or the Gregorian calendar but also more specialised ones such as time in digital
circuits. As we will see in this section, Constraint Logic Programming [JL87] specialised

to Finite Domains (CLP(FD)) and reified Booleans (CLP(6)) turns out to be a very
suitable framework: the size of the temporal variables domain admits an efficient
implementation with Finite Domains and the reified Booleans allows us to express

elaborated temporal constraints. Moreover, since CLP(X) is so pervasive to this work,
an overview of the main characteristics of this paradigm can be found in Appendix B.

Although constraints are widely used for temporal reasoning, their application in
temporal information representation is rare. One of the exceptions is the work of
Kabanza et. al [KSW90] with infinite temporal information. Here we present another
way of using constraints to represent temporal data: by interpreting a Constraint
Satisfaction Problem as an intensional way of specifying a set of time points, i.e. as a

time point domain:

Definition 8 (Time Point Domain) A ti,me po'int domai,n i,s a Constraint Sati,sfac-

tion Problem on fini,te doma'ins.

7l

72 CHAPTER 6, TEMPORAL REASOAIII\TG IN A MODULAR LANGUAGE

If n is the number of variables of the CSP we say that the domain is n-dimensional. A
time point is a tuple that is solution of the CSP:

Definition 9 (Time Point) Gi,uenati,mepoi,ntdomai,nD onuari,ables {Xr,...,Xn}
we so,A that the tuple X : (rr,. . . ,rn) i,s a ti,me poi'nt of D I'f the assi,gnment {Xt :
fri.t . . . , Xn - r,-]l sati'sfi,es all the constra'ints of D '

With this representation the domain Dz+ can be formulated as:

Example 4 (24-Hour) The CSP Dz+ : H € [0,23] A M e [0,59] on uariables

{H,M} i,s a t'ime po'int domai,n representi,ng the Zl-Hour system. The tuples r :
(10,30) and y: (13, 20) are eramples of ti,me poi,nts of thi,s domai,n.

Finally it is rather straightforward, although not as trivial as the 24-Hour, to use a

CSP to represent a calendar (Gregorian, Julian, etc).

Considering there are benefits in dealing with each of the tuple members instead of the

tuple as a whole, we modified the temporal variables to accommodate this:

Definition 10 (Time Variable) We say that X i,s a ti,me uari,able of the n-di,mensi'onal

ti,me poi,nt domai,n D iff X i,s a n-tuple of CLP(FD, B) uariables.

For instance X1 : (Ht, M1) and Xz : (Hr, Mr) are variables of D2a. With this

representation for variables it is easy to express constraints that correspond to the

equal, before and after relations. For instance, X1 < & corresponds to the constraint

Hr 1 H2V (h - Hz A Mr 1M2). Note that this constraint may be expressed using

CLP(FD, B).

Finaily, since GNU Prolog/CX, besides providing the CxLP primitives, also has a

constraint solver over finite domains and reified booleans (CLP(FD, 6)), making the

implementation of this language relatively straightforward.

Relations Between Different Time Point Domains

Applications such as Heterogeneous Information Systems have to deal with temporal

data described in different domains. There are several reasons for this state of things

such as:

o information relative to different timezones or calendars (Julian, Gregorian and

Chinese lunar calendar) ;

6.6. RELATED WORK 73

o information from different domains that share temporal units. For instance a
newspaper is characterised by {Year,,Month,OaA} and a specific news can be

further described by Hour and Mi,nute.

Therefore there is a strong need to establish (whenever possible) temporal relations

between these different time domains. To have this capability in our framework we

just need to add a functi,on that converts a time point from one domain to another.

A simple illustration of such function is the one that relates the 24-Hour domain with
seconds (denoted by Dza") and the D2a:

Dz+, ----+ Dz+

(h,m,s) ------+ (h,*)

Another basic example is the one derived from the problem of conversion of timezones.

For that consider the domain Dat on variables {y, Mo,D,H,Mi} for time in the
timezone GMT+I and a similar Da2 to express time in the timezone GMT+2. The
following function converts time points from D4 to Da2:

D*,
(a,*o,d,h+l,mi.) lf h <23
(u,^o, d + 1,0, mi) tf d < mar _day(a, rno)

Please notice that, although the inverse of g is still a function, this doesn't happen for /
because, to each time point of. D2a corresponds a set of time points of D2a": for instance,

to the point (14,20) corresponds the set of points {(L4,20,0), . . . , (14,20,59)}.

If there is at least one corversion function between two domains, it is easy to relate
(:, < or >) points on these domains. The procedure its quite simple and can be

described in two steps: convert the points to the same domain and apply the corre-
sponding domain relation.

As an illustration, consider the point (16,20) of. D2a and (15,30, 12) from D2a". The
relation (15,30, L2) < (16,20) its valid because /(15,30, 12) : (15,30) and (15,30) <
(16,20) in the domain D2a.

6.6 Related Work

In this section we describe other formalisms that combine temporal reasoning with
modularity. Since Multi-theory Temporal Annotated Constraint Logic Programming

s:

r,^1"),'.0,*u _.-
t

74 CHAPTER 6, TEMPORAL REASOI\III\TG IN A MODULAR LANGUAGE

(MuTACLP) is the language that is nearer to our proposal, a more indepth comparison

with this language is presented.

6.6.1 MuTACLP

MuTACLP [BMRT02] is a language for modelling and handling temporal information

together with some basic operators for combining diflerent temporal knowledge bases.

In this language, temporal information can be naturally represented and handled and,

at the same time, knowledge can be separated and combined by means of meta-

level composition operators. For a more comprehensive reading see [MRI97, MRT99,

MRT99, Raf00, MNRTO0, BMRT0l].

The operators for combining theories follows the work of Brogi et al. [BMPT94]. The

Ianguage of program expressions Erp is defined by the following abstract syntax:

Erp ::: Pname I ErpU Erp lErp) Erp

where Pname is the syntactic category of constant names for plain prograrns.

The main difference towards our proposal is that, instead of the programming-in-the-

iarge approach for modularity followed by MuTACLP, we resort to the programming-in-

the-small of CxLP. In the following section, and for a better comparison, we illustrate

both languages proposals for a specific legal reasoning problem'

Example: the British Nationality Act

The following example was taken from the British Nationality Act and was presented

in [BMRT}2] to exemplify the language MuTACLP. The reason to use an existing

example is twofold: not only do we consider it to be a simple and concise sample of

Iegal reasoning but also because this way we can give a more thorough comparison with
MuTACLP. The textual description of this law can be given as a person X obtains the

British Nationality at time T if all the conditions below are true:

o X is born in the UK at the time T

o T is after the commencement

Y is a parent of X

Y is a British citizen or resident at time T.

6.6. RELATED WORI< 75

Assuming that Jan 1 1955 is the commencement date of the law, the MuTACLP
program for this problem is:

BNA:

born(X, uk) at T,
parent(Y, X) at T,
british-citizen(Y) at T.

born(X, uk) at T,
parent (Y, X) at T,
british-resident (Y) at T.

Moreover, those authors also assume a separate program to encode the data for a given
person John whose parent Bob is a British citizen since,9ep 6 1940:

JOHN :

born(john, uk) at Aug 10 1969.

british-citizen(bob) tfr ISep 6 1940, inf].

Finally, the citizenship of John can be queried as:

demo(BNA U JOHN, get_citizenship(john) at T)

and the result is T = Aug 10 1969.

Our proposal to solve this problem is a more modular way since we will opt to define

one unit for each predi,cate. More specifically, unit born/2 represents the name and
country where a person was born:

: - unit (born (Nane , Country)) .

born (john, uk) at 'Aug 10 1969 ' .

item at T :- born(Nane, Country) at T.

It this unit (and in the subsequent one) we present dates as atoms such as 'Aug 10

1969 ', this is only for the reader's confort since, as mentioned in Sect. 6.5 we resort
to CLP(FD, B) to implement the temporal elements. Moreover, in order to provide
an implementation coherent with the current CxLP proposal we also define predicate
item to instantiate the units arguments.

The unit british-citizen/ta states when a person started to be a British citizen:

aln a similar way we could have defined an analogous unit british-resident,/1.

76 CHAPTER 6. TEMPORAL REASONIAIG IN A MODULAR LANGUAGE

: - unit (Uritish-citizen (Name)) .

british-citizen (bob) tn ['Sep 6 1940 ' , inf] .

item th T :- british-citizen(Name) tfr T.

and unit parent (Parent, Son) expresses the parent/child relationship:

: - unit (parent (Parent , Son)) .

parent (UoU , j ohn) .

item : - parent (Parent , Son) .

Remembering that Jan 1 1955 is the commencement date of the law and that a person

X obtains the British Nationality at time T if all the conditions below are true:

o X is born in the UK at the time T

o T is after the commencement

o Y is a parent of X

o Y is a British citizen or resident at time T.

one formalisation of this law in our language is:

: - unit (bna) .

get-citizenship (X) at T : -

I:l'X',;ll ,';=:';l a'i r'

parent (Y, X) : > item,
(Uritish-citizen(Y) :> item at T

;

british-resident (Y) : > item at T) .

The explanation of this rule is quite simple because each line of the clause body

corresponds to and is presented in the same order as in the textual description of

the law.

Finally, thegoalbna :> get-citizenship(john) at TalsoyieldsT = Aug 10 1969.

6.6.2 Other Approaches

This combination of modularity and temporal reasoning is not frequent on logical tem-

poral languages. Two exceptions are the language Temporal Datalog by Orgun [01996]

6,7. CONCLUDING REMARKS

and the work on amalgamating knowledge bases by Subrahmanian [Sub9]. Temporal
Datalog introduces the concept of module which, however, seems to be used as a means

for defining new non-standard algebraic operators, rather than as a knowledge tools.

On the other hand, the work on amalgamating knowledge bases offers a multi-theory
framework, based on annotated log'ics, where temporal information can be handled, but
only a limited interaction among the different knowledge sources is allowed: essentially
a kind of message passing mechanism allows one to delegate the resolution of an atom
to other databases.

6.7 Concluding Remarks

In this chapter we added temporal reasoning capabilities to a modular logic language.

More specifically, we joined the Temporal Annotated Constraint Logic Programming
with Contextuai Logic Programming. The aim of this proposal is to have both for-
malisms in the same language, without defining any sort of relation between temporal
reasoning and modularity.

Besides defining the language, we also provided an operational semantics. Moreover, we

sketched a compiler for the proposed language and specified a possible implementation
for a specific time point domain. Finally, we reviewed related work on this subject, in
particular, the MuTACLP language that also combines the chosen temporal formalism
with another modular logic language.

77

Chapter 7

Temporal Contextual Logic
Programming

This chapter presents a temporal extension of CxLP, called Temporal Contextual
Logic Programming (TCxLP). It describes the language syntax, operational
semantics and a procedure that computes the last upper bound of the temporal
annotations. Afterwards, an interpreter and a compilation scheme are given. Finally,
this language is applied to several domains and compared with similar approaches.

7.L Introduction

One possible way of devising a language with modularity and temporal reasoning is
to consider that these two characteristics can co-exist without any direct relationship.
This was the approach foilowed in Chap. 6. Nevertheless we can also conceive a scenario
where those concepts are more integrated or more related. In this chapter we take the
interaction between modularity and time to the next level by considering that the usage
of a module is influenced by temporal conditions. The intuition for this proposal came
from common sense reasoning where it is usuai to consider that the usage of (part of)
knowledge (law, criteria) can be time dependent.

Contextual Logic Programming structure is very suitable for integrating with temporal
reasoning since, as we shall see, it is quite straightforward to add the notion of. ti,me of
the contert and let that time help in deciding if a certain module is eligible or not to
solve a goal. Regarding the temporal paradigm we shall continue to use TACLP, not
only because of the reasons enumerated in Sect. 6.1, but also because, this way, the
original contribution stands out.

This chapter is organised as follows: we start incrementally building a language that
extends CxLP with temporal annotations (Sect. 7.2). An algorithm to compute the

79

80 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

Ieast upper bound of annotations is described in Sect. 7.3. Afterwards, we deal

with the semantics of this proposal, more specifically, the constraint theory and the

operational semantics (Sect. 7.4). An implementation with an instantiation for the

time point domain (see page 71) follows in Sect. 7.5. Applications to several domains

is presented in Sect. 7.6 and comparisons between our framework and related work

follows (sect. 7.7). Finally, we provide some conclusions in sect. 7.8.

7.2 Language of TCxLP

The basic mechanism of CxLP is called contert search and can be described as follows:

to solve a goal G in a context C, a search is performed untii the topmost unit of C that

contains clauses for the predicate of G is found. We propose to incorporate temporal

reasoning into this mechanism. To accomplish this we add temporal annotations to

not only the dynamic part of CxLP (conterts) but also to the static one (uni,ts) and

it will be the relation between those two types of annotations that will determine if a
given unit is eligible to match a goal during a context search.

7.2.L Annotating Units

Considering the initial unit definition (i.e. without parameters), adding temporal

annotations to these units could be done simply by annotating the unit name. Using

an extended GNU Prolog/CX syntax, an annotated unit could be defined as:

: - unit (foo) tn [1,4] .

Nevertheless, units with arguments ought to allow for a refinement of the temporal

qualification, i.e. we can have several qualifications, one for each possible argument

instantiation. As an illustration consider the following example:

Example 5 Temporal annotated uni't bar/l:

bar(a) th [1,2].
bar (b) tn [3 ,4] .

where the annotated facts state that unit bar with its argument instantiated to a has

the annotation th lL,2) and with its argument instantiated to b has the annotation

th [3,4] , respectively. Moreover, it should be ciear that this is more expressive than

the proposal at the beginning of this section since it is still possible to annotate the

7.2. LANGUAGE OF TCXLP

unit most general descriptor (for the definition of unit descriptors see Parametri,sed
Uni,ts in Sect. 5.5) :

: - unit (foo) .

foo th lt,4).

As we saw in the example above, the unit descriptor is the same as the annotated
predicate, f oo. Such overloading is intentional and makes it easier to express whether a
given unit (descriptor) in a context satisfies a temporal condition (annotated predicate).
This relation will be made precise when we present the operational semantics (see

inference rule 7.5 in page 88).

Therefore we propose to temporally annotate the unit descriptors and those annotated
facts are designated as the :unit temporal conditions.

7.2.2 Temporal Annotated Contexts

The addition of time to a context is rather simple and intuitive: instead of a sequence
of unit descriptors C we now have a temporally annotated sequence of units descriptors
CA, where A is a temporal annotation of the type at t, th r or in r (see page 13).
This annotation A is called the ti,me of the contert and by default contexts are implicitly
annotated with the current time. As the name implies, the time of the contert specifies
the time when a given context should be considered, making all the computations
relative to that time.

Recall that in GNU Prologlcx a context is impiemented as list of units descriptors
suchas [u1(x), u2(y,z)f:atemporalannotatedcontextcanbeforinstance [u1(x),
u2(Y ,z)l th [1,4].

7.2.3 Relating Temporal Contexts with Temporal Units

Although the reiation between temporal annotated contexts and units witi be made
precise when we present the semantics (Sect. 7.4), in this section we illustrate what we
mean when we say that the relation between those two types of annotations (context
and units) determines if a given unit is eligible to match a goal during a context search.

Contexts for a Simple Tiemporal Unit

Consider the unit bar/t of Example 5 (page 80). Roughly speaking, this unit will be
eligible to match a goal in a context like:

81

82 CHAPTER 7, TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

[.. . , bar(a), .l in [1,4]

if "bar(a) in [1,4]" can be proved.

Since one of the unit temporal conditions is "bar(a) th lI,27" and we known that

in [1,4] f th u,2), then by the inference rule (E) (see page 14) one can derive

"bar(a) in l!,4)". In a similar way we say that this unit its not eligible in the

following context (recall that th [3,61 [, tn [3,4J):

[..., bar(b), ...] th [3,6]

Conversely, suppose that unit bar / 7 has some definition for the predicate of an atomic

goal G, then in order to use this definition in a goal like:

?- [bar(X), ...] in [1,4] :< G

besides the instantiations for the variables of G, one also obtains bindings for the unit

arguments:

X = aorX = b.

University Employees Example: Temporal Version

Revisiting the University employees example (aiready seen in page 63 to illustrate

CxLP and in page 68 to exemplify CxLP with temporal annotations), unit employee

with temporal information can be written as:

: - unit(employee(NAME, P0SITI0N)) .

name (NAME).

position (POSITI0N) .

item.

emproyee(bilr, ta) tir 12004, infl.
employee(joe, ta) th 12002, 20061.
emproyee (joe, ap) th 12007, infl .

This way it is possible to represent the hi,story of the employees positions: joe was

a teaching assistant (ta) between 2OO2 and 2006. The same person is a associate

professor (ap) since 2007. Moreover, in this case the rule for predicate item/O doesn't

neecl to be "item : - employee(NAME, POSITION) ." because the goal item is true only

if the unit is (temporaliy) eligible and, for that to happen, the unit arguments must be

7,2. LANGUAGE OF TCXLP

instantiated. To better understand this example, consider the goal that queries joe's
position throughout [2005,2006] :

? - [employee (joe , P)] th [200s ,2006] : < item.

the evaluation of item is true as long as the unit is eligible in the current context, and
this happens when P is instantiated with ta (teaching assistant), therefore we get the
answer P = ta.

In a similar way we can define a temporal version of unit index/2 as:

: - unit (iudex (POSITI0N , INDEX)) .

position (POSITI0N) .

index(INDEX).

iten.

i.ndex (ta, 10) th [zooo, 2005] .

index(ta, L2) th [2006, inf].
index(ap, 19) th [2000, 200b].
index(ap,20) th [2006, infJ.

to express the evolving index associated with each position. Unit salary can be defined
AS:

: - unit (salary (SALARY)) .

iten : -
position (p) ,

index(P, I) :> item,
base_salary (B) ,

SALARY is B*I.

base_salary (100) .

There is no need to annotate the goals positlon(P) or index(P, I) :) iten since
these are evaluated in a context which already has the same temporal annotation. To
find out joe's salary in 2005 we can say:

? - [salary (S) , employee (joe , p)] at 2OOS : < iten.

which yields the bindings:

P=ta
s - 1000

84 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

Since salary is the topmost unit that defines a rule for iten/O, the body of the

rule for this predicate is evaluated. In order to use the unit employee(joe, P) to

solve position(P), the unit must satisfy the temporal conditions "at 2005", that in

this case means instantiating P with ta, therefore we obtain positlon(ta). A similar

reasoning applies for goal "index(ta, I) :) item", i.e. this item is resolved in context

"[index(ta, 10), salary(S), enployee(joe, ta)] at 2005"' The remainder of

the rule body is straightforward, Ieading to the answer substitution P = ta and S =

1000.

7.3 Computing the Least Upper Bound

One obvious drawback stemming from incorporating temporal reasoning into context

search is the extra computation that resuits from processing the units/contexts tempo-

ral annotations. Moreover, since context search is a basic mechanism, extra care must

be taken to minimise this overhead.

In order to lighten the process, we propose to calculate, at compile time, the least

upper bound (r_-l) of the units descriptors temporal annotations. This way context oniy

needs to verify the satisfaction of the relation between annotat'ions of the context and

that of the units, i.e. oniy relation f is left for runtime.

According to [BMRT02] it suffices to consider the least upper bound (or lub for

short) for time periods that produce another di,fferent meani'ngful time period, i.e.

one may consider only overlapping time periods that do not include one another (see

Sect. 6.3). In this section we present a procedure that iterates over the set of each unit

th-annotated descriptors, calculating the lub of unifiable atoms with th-overlapping

intervals, inserting the output of the computation and (possibly) removing (some of)

the inputs. This procedure is presented in an incremental way, starting with ground

annotated unit descriptors and afterwards we handle the non ground case.

7.3.L Ground TemPoral Conditions

In this case the set of temporally annotated unit descriptors is not only finite (by

definition) but also ground. Before giving a formal description let us consider an

example that provides the general intuition behind this procedure. To that purpose,

consider the unit baz/\:

: - unit (baz (X)) .

baz (a) th [1 ,4] .

baz (a) th [3 ,7] .

7.3. COMPUTING THE LEAST UPPER BOUND

Since th [1,4] and th [3,7] are two overlapping th-annotations for the same unit
descriptor (oaz(a)), we compute their lub, obtaining th 17,71. Therefore, we can

replace these two temporal conditions by a more general one:

: - unit (baz (X)) .

:::,",
th tt ,7) .

A formal description of this procedure is given in Algorithm 1 (page 85). Basically,

the algorithm iterates over the set of units of a given program and for each pair of th-
annotated temporal conditions that have the same unit descriptor (z) and overlapping

intervals (.I1 overlaps .I2), remove that pair from the unit temporal conditions and insert

one with the same unit descriptor and the annotation that results from the computing

the lub of those annotations, i.e. insert a new temporal condition that subsumes the
previous two.

One can easily see that this procedure terminates not only because the set of units is
finite (for loop) but aiso due to the fact that each iteration of the while loop decreases

the size of the said set, the set of th-annotated temporal conditions of a unit.

Algorithm I- Computing the least upper bound of ground th-annotations
Let {uy,. . . ,un} be the set of units of a given program P and Thuu the set of th-

annotated temporal conditions of unit ui (that, by hypothesis, are all ground):

1. For each unit ui e P

(a) while (l u th fi, u th 12 e Th,o: I overlaps /z)

i. remove u th 1r and u th 12 from Thuo

ii. insert u th (! J 12) rnto Thun

7.3.2 Non Ground Temporal Conditions

In this section we provide a generalisation of Algorithm 1 to non ground th-annotated

temporal conditions. As a simple illustration consider :urrit foo/2:

r I - unit (foo (X, Y)) .

z foo(-, b) th [1, 3].
a foo(a, -) th 14, 61.
a foo(a, b) th [5, 8].

85

86 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

Previously, a unit u with parameter variables 7' was a set of clauses, for which all
variables in p' are implicitly existentially quantified over all clauses of the unit. The

same existential quantification also applies to the unit temporal conditions. Therefore,

in the example above there is no need to name the variables in the temporal conditions
(lines 2 and 3) since the first argument of foo already coincides with X and the second

with Y, i.e. the unit arguments.

Before describing the procedure for the non ground case, we have yet to define what
we mean by an annotated atom being subsumed by a set of the same elements:

Definition 11 (Fr) Consi,der that S 'is a set of temporal annotated atoms. We say

that A th I es subsumed by the set S and denote by S ll A th I i,f and only i,f there i,s

a B th J e S and a subst'ituti,onl suchthatA: B0 and I c. J,'i.e. i.f therei,s an

annotated atom i,n S that i,s at least as i,nformat'iue as A th I.

The procedure for this case is formally presented as Algorithm 2 (page 86) and can be

described as: for every unit, find two th-annotated temporal conditions that overlap

(.I1 overlaps 12) and whose unit descriptors are unifiable (0:mgt(Uy,U2)). Them

(possibly) remove those temporal conditions and insert a new one with the annotation

that results from computing the lub (h-J12) and uni.fied descriptor (U10). Moreover,

the body of the whi,le loop is executed if the temporal condition that can be generated

isn't already subsumed by the set of th-annotated temporal conditions (Th,o VE

(ur?) th(r1 Li I2)).

Algorithm 2 Computing the least upper bound th-annotations
Let {u1,.. . ,un} be the set of units of a given program P and Thun the set of th-
annotated temporal conditions of unit z;:

1. For each unit u6

(a) while (1 U, th 11, U2 th 12 e Thu,, 0 : mgtt(U1,U2): -[overlaps 12 and

Thuo v. (u10) th(I1 u 12)

i. 1f Ut (tl) is ground, remove Ulth I, (Uzth 12) fromTh,o.

ii. insert Ufi th (hr 12) into Thuo.

For a better understanding, let us consider unit foo/2 above. According to this
algorithm one possible evolution of the set Thyoolz is:

{too(-, b) th [1, 3], foo(a, -) trr 14, 61 , foo(a, b) th [5, 8]].

{too(-, b) th [1, 3], foo(a, -) ttr 14, 61 , foo(a, b) th [1, 6],
foo(a, b) th [5, 8]].

1.

2.

7.4, OPERATIONAL SEMANTICS 87

3. {foo(-, b) th [1, 3], foo(a, -) tn 14,61, foo(a, b) th [1, 8]]

The first iteration computes the iub of the {too(-, b) th [1, 3J] and {foo(a, -)
th 14, 6J), yielding {foo(a, b) th [1, 6]]. In the next iteration, the lub of the

inserted annotation ({too(a, b) th [1, 6J]) and {foo(a, b) th [5, 81] is com-

puted, yielding {foo(a, b) th [1, 8]].

Like the algorithm for the ground case, we also iterate over a finite set of units (for loop),

nevertheless showing the termination of the while loop requires more explanation since

now the set of th-annotated temporal conditions may not decrease. In fact, as we saw in
the example above, the first iteration increases the set and the second decreases. Before

explaining the termination the reader should keep in mind that the unit descriptor is

a finite term and the set of temporal conditions is also finite. Moreover, the temporal
periods of the th-annotations are of the form [f1 , T27 where T1 and T21 are integers,

greater or equal than 0, with T2 > T1. Therefore, the number of temporal conditions
that can result from combining overlapping intervals or by specialising descriptors is

finite. Since each iteration of the while loop introduces a new temporal condition (not

subsumed by the others) of a finite set, the loop terminates.

7.4 Operational Semantics

Similar to the operational semantics of Contextual Logic Programming (see Sect. 5.3)

and as usual in logic programming, we present the operational semantics by means of
derivations. We will name and enumerate the inference rules which specify computa-

tions. Finally, the paragraph after each rule gives an informal explanation of how it
works.

7.4.L Inference Rules

To define the operational semantics we consider the following notation: C and C' are

contexts; 7i is the set of temporal conditions of unit u;0,o and e are substitutions; A
and A are temporal annotations and 0 and G arc goals. Moreover, we also assume that
Algorithm 2 (page 86) has been applied to the subset of th-annotated atoms of Tu.

Null goal

cLt a ftl
lwith the possible exception of T2 = inf .

(7.1)

8B CHAPTER 7, TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

The null goal is derivable in any temporal annotated context, with the empty

substitution 6 as result.

Conjunction of goals

cLt Gr l0l CL? t G20 lol
C L I Gr, Gz l1oluar s(Gr, Gr)1

(7.2)

To derive the conjunction, derive one conjunct first and then the other, in the

same context with the given substitutions.2

Since C may contain variables in unit descriptors that may be bound by the
substitution d obtained from the derivation of G1, we have that d must also be

applied to CA to obtain the updated context in which to derive G20.

Context inquiry

C L I :< C'1\ l0]

I 0 : mgts(C,C')

I lqa (7.3)

In order to make the context switch operation (inference rule 7.4) useful, there

needs to be an operation which fetches the context. This rule recovers the current

context C as a term and unifies it with term C', so that it may be used elsewhere

in the program. Moreover, the annotation A must be equal to or less informative

than the annotation A (A E A).

Context switch

c'Lt G l0l
CA l- C'/\ :, G [e)

The purpose of this rule is to allow execution of a goal in an arbitrary temporal
annotated context, independently of the current annotated context. This rule

causes goal G to be executed in context C/A.

Reduction

(7.4)

(7.5)
(uC$e F (G,, Gz...G")0 lol

g *-Gt,Gz...G"e lul
0 : mgrt(G, H)
Tula uL,

uCA,t G l1oluars(G)l

This rule expresses the influence of temporal reasoning in the context search

mechanism and can be regarded as the temporal version of rule 5.3 (page 56).

2The notation 6lV stands for the restriction of the substitution d to the variables in tr/.

7.5. TCXLP COMPILER AAID INTERPRETER

Informally it can be described as: when a goal (G) has a definition (If *-
Gr,Gz,...Gn e lul and 0 : mBu(G,,H)) in the topmost unit (z) of the an-

notated context (uC L) and the unit temporal conditions subsume the "time of

the context" (Tu F; uA), to derive the goal we must call the body of the matching

clause, after unification. The main difference towards the non-temporal version

is that we now also check whether the unit is "temporally eligible".

Context traversal:

c\t Glol
{ nred(G) / a (7.6)

uCLr Gl?)

When none of the previous rules apply and, in particular, when the predicate of

G isn't defined in the predicates of u (Z), remove the top element of the context

and proceed, i.e. resolve goal G in the supercontext.

Application of the Rules

It is straightforward to verify that the inference rules are mutually exclusive, Ieading

to the fact that, given a derivation tuple CLI G[0], only one rule can be applied.

7.5 TCxLP Compiler and Interpreter

In this section we propose a source-to-source program transformation that ailows us

to convert from Temporal Contextual Logic Programming into CxLP where the unit
descriptors can have temporal annotations. Since after this transformation we obtain
(a subset of) the language proposed in Chap. 6 we can use the compiler (or interpreter)

described in Sect. 6.5 on the resulting program. This way we obtain a compiler (or

interpreter) for TCxLP.

7.5.L Flom TCxLP to CxLP+TACLP

Our goal is to convert a TCxLP program into CxLP (with annotations), such that this
Iast program expresses the behaviour of context search being influenced by temporal
reasoning. Informally, we add to every unit a sort of "frontend" that makes the unit
body (the "backend") accessible only if the unit temporal conditions are satisfied by
the time of the context, otherwise context search must continue, bypassing the unit.

In the first step of Algorithm 3, throughout renaming the predicates we define the

"backend". The access to the renamed predicate (p') is controlled by means of the

89

90 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

Algorithm 3 Program transformation: from TCxLP to CxLPTTACLP
Let P : {ut,...,un} be a TCxLP program and llPll : UL, lluall, i.e. llPll is the set

of predicates defined in all units. Consider also the set of predicates ,S such that:

. #S : #llPll

o ,S o llPll: A

o for each predicate p € ll2ll there is a p' e ,5

For each unit u6 and predicate p defined in this unit:

1. replace each occurrence of p by p';

2. insert into ui a new clause

where pd (p'd) and ud are the predicate p (p') and unit u descriptors,

respectively.

clause introduced in the second step: to resoive a goal (pd) whose main functor is p,

query the current temporal context (: < [ud I C] A) and if the unit satisfies the temporal

conditions (ua A) then access the "backend" predicate (p'd), otherwise continue the

context search for the given goal (C A :< pd).

As an illustration of the procedure above, the following unit

:- unit(foo(A,B)).

p(x) :- q(x).
q(a).

is transformed into

:- unit(foo(A,B)).

p'(x) :- q'(X).
q' (a) .

p(x) :- :< [foo(Y, Z)lC7 T,

q(x) :- :< [roo(Y, Z)lC) T,

7.6. APPLICATION EXAMPLES

For reading purposes, in the program above we used an abstract version ofthe generated

code, since C T or :([foo(Y, Z) lC7 T isn't valid CxLP code.3

7.6 Application Examples

We now present a few examples which will sustain the adequacy of TCxLP. To ease

the reading, in this section we present dates by atoms such as 'Aug 10 1969'. Nev-

ertheless, as mentioned in Sect. 6.5 (page 71), we resort to CLP(FD, B) to implement
the temporal elements. Moreover, unless stated otherwise, we assume that all temporal
units implement the fact item.

7.6.L Management of Workflow Systems

Workflow management systems (WfMS) are software systems that support the au-

tomatic execution of workflows. Although time is an important resource here, the
time management offered by most of these systems must be handled explicitly and is
rather limited. Therefore, automatic management of temporal aspects of information
is an interesting and growing field of research [CP03, CP04, CP06, MMZ06]. Such

management can be defined not only at the conceptual level (for instance changes

defined over a schema) but also at run time (for instance workload balancing among

agents).

The example used to illustrate the application of our language to WfMS is based on

the one given in [CP0] and can be described as the process of enrolment of graduate

students applying for PhD candidate positions. In the first proposal of the process

model, from September 1"', 2008, any received application leads to an interview of the
applicant (see workflow on the left of Fig. 7.1). After September 30'h, 2008, the process

model was refined and the applicants CVs must be analysed first: only applicants with
an acceptable CV will be interviewed (see workflow on the right of Fig 7.1).

One of the functionaiities performed by the workflow engine is selecting the successor

task. Combi and Pozzi in [CPO] implemented their functionality by means of a trigger
FindSuccessor. Since the acti,ue features of this trigger are outside the scope of this
work, we are going to illustrate in our language the temporal aspects, recurring to the
units: task-hi.story, case-history, work-task and next-task. Below, for each

unit we present a short explanation together with its implementation.

Unit task-history has the case identifier, the name of the tasks that were effectively

3In the actual implementation we use special units to represent the temporal information of the
context.

91

92 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

ReceiveApplication

R1

RejectApplicationl lAcceptApplication

RecelveAppllcation

,oK" -/ \ CvResult-'Reject"

-{

R2 }--

R1

RejedApplication I I AcceptAppllcatlon

Figure 7.1: The student enrolment process model: initial proposal (left) and refinement

(right)

executed for that case along with the executing agent.

: - unit (task-history (CaseID , Task, Finalstate , Agent)) .

task-history (27 , receiveApplication , completed , r01)
th ['Sep 9 2008', 'Sep 9 2008'].

task-history (89, receiveApplication , completed , b01)
th [, oct 3 2008

"
'oct 3 2008 '] .

Unit case-history has the unique identifier for every case together with the respon-

sible agent.

:- unit(case-hlstory(CaseId, Schema, R€sPonsible)).

case-hist ory (27, studentEnrollment , r01)
th ['Sep 9 2008' , 'Sep 27 2008'].

case-history(89, studentEnrollment, b01)
th [,oct 3 2008" 'oct 31 2008',].

Unit work-task has the name of the task and the role required by the agent for the

execution.

: - unit (work-task (Schena , Task, RoIe)) .

work-task (studentEnrollment , receiveApplication ,

secretary) th ['Sep t 2008' , inf].
work-task (studentEnrollment , interview ,

committeeMenber) ttr ['Sep 1 2008', inf].

7,6, APPLICATIOAI EXAMPLES

Unit next-task provides a simplified versiona of the integration of tables RoutingTask,
Next and AfterFork [CP04]. This unit, besides the successor for every task, also has a

condition that must be satisfied in order to allow such a transition to take place. The

first temporal qualification states that for the student enrolment, the next task after
receiving an application is doing an interview, but this is only valid between 'Sep 1

2008' and'Sep 30 2008'.

: - unit (next-task(Schema, Task, NextTask, Condition)) .

next-task (studentEnrollnent , r€ceiveApplication ,

intervi-ew, -) th ['Sep t 2008', 'Sep 30 2008'].
next-task (studentEnrollment , r€ceiveApplication ,

analyzeCV, _) th ['oct 1 2008', inf].
next-task (studentEnrollnent , anaIyzeCV ,

intervJ.ew , cvresult (ok)) th ['0ct 1 2008 ' , inf] .

Recalling that all the above units implement the fact item, consider the goal:

?- (tl at 'Sep 4 2008') :>
next-task (studentEnrollment,

receiveApplication, N, -) :> iten.

N = interview

i.e., at 'Sep 4 2008 ' , the next task afber receiving an application is an interview. The
same query could be done without the explicit time:

? - next-task (studentEnrollment , receiveApptication ,

N, -) :> item.

N = ana1yzeCV

Recall that, if nothing is said about time, we assume we are in the present time (after

'Sep 30 2008 ') and, according to the refined workflow, the next task must be to
analyse the CV.

Finally, using the units above, we can simulate the behaviour of the FindSuccessor
trigger in the following way:

, Icase-history (CaseId , Schema , -)] th [L, -] : <

z item, fd-min(L, Lmin),
r [] at Lmin :>
n rr€xt-task (Schema , Task , NextTask , Conditions)

93

aTo obtain the full representation we just need to handle the task conditions.

94 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

: '' t;l:l:task(Schema,
Nextrask, Rore) :> item)

The first two lines query when the case started, allowing us to know which version of
the workflow must be applied.5 Then the context time is set to the lower bound and

the next task, along with the conditions for this transition to take place are specified

in lines 4 and 5. In the last line, the role of the employee which will execute this task

is given.

7.6.2 Legal Reasoning

Legal reasoning is a very prolific field in which to illustrate the application of temporal

languages. Not only is a modular approach very suitable for reasoning about laws

but also time is pervasive in their definition. To illustrate the use of TCxLP in the

legal reasoning domain, we return to the Bri,ti,sh Nat'ionali,ty Act aiready exploited in

Sect. 6.6.1 (page 74).

The solution below presents several simiiarities with the CxLP with temporal annota-

tions. The intention of focus on the differences between the proposals.

The TCxLP solution also has a unit born/2:

: - unit(born(Name, Country)).
born (j otrn , uk) at 'Aug 10 1969 ' .

Although it might seem that this unit is almost identical, in the case of TCxLP (and

remembering that all temporal units implement the fact item), now we can ask when

John was born as:

?- [born(john, uk)] at T:< item.

in this case the context has the temporal informations, as opposed to the CxLP with
annotations query:

?- [born(jonn, uk)] :< item at T.

Before presenting the rule for the nationality act we still need to state some facts about

who is a British citizen aiong with who is parent of whom:

: - unit (Uritish-citizen (Name)) .

british-citizen (bob)
th ['Sep 9 1940', inf].

5fd_min(L, Lmln) succeeds if Lmin is the minimal value of the current domain of L.

7.6. APPLICA?/OAT EXAMPLES

: - unit (parent (Parent , Son)) .

parent (bob, john)
th ['Aug 10 1969,, inf].

To declare that the commencement date is , Ja:r 1

: - unit (bna) .

bna th [, Jan 1 1955, , i.nf] .

1955', consider the following unit:

Now we can give a formulation of this law in our language:

; " at r :< t::::lli,:-ir'1,'lil;,
s bna :> item,
t (british_ citizen (Y) : > item;

british_resident(Y) :> item)).

Notice that, by making use of the time of the context (t), there is no need to explicitly
mention this anywhere else. This is the main difference w.r.t. CxLP with temporal
annotations versions. As an informal description of this rule, we can say that we
start by defining the time of the context as the time when the person was born (1).
Afterwards, we query the name of the parent (2) and if the bna law can be apptied (3)
in this temporal context. Finally, we ask whether the parent is a British citizen (4) or
a British resident (5).

7.6.3 Vaccination Program

Vaccinations programs are a very prolific domain for temporal reasoning. Not only
is the inoculation of a given vaccine (doses) time dependent, but also the vaccination
plans evolve throughout time. In this section we illustrate the use of TCxLP to reason
about changes that occurred in a vaccination program. Although we axe going to report
our example to the Portuguese case, we do so without loss of generality.

In Portugal, a new National Vaccination Program was introduced in the year 2006.
Several changes regarding the previous program (that started in 2000) were made,
nameiy the introduction of the Meningococcal C vaccine. In Table 7.1 we can see a
(partial) representation of this vaccination program.

95

96 CHAPTER 7. TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

Vaccine against
Age

0 (birth) 2 months 3 months 4 months

Tuberculosis

Poliomyelitis
Diphteria-Tetanus-Whooping cough

Haemophilus influenza b

Hepatitis B
Meningococcal C

BCG
VP1
DTPa 1

Hib 1

VHB 2

VIP 2

DTPa 2

Hib 2

VHB 1

MenC 1

Table 7.1: Vaccination recommended scheme

One can regard it as set of facts that specify when one given vaccine should be

inoculated, for instance the vaccines against Tuberculosis and Hepatitis B (first doses)

should be inoculated at birth, Poliomyelitis (first doses), Diphtheria-Tetanus-Whooping

cough (first doses), Haemophilus influenzab (first doses) and Hepatitis B (second doses)

shouid be inoculated at the age of 2 months, etc.

Regarding vaccines, the most common questions made by a heaith care professional

are:

when was the last one?

when should the next one be performed?

The answer to the former its quite straightforward whereas the latter entails know-

ing the vaccination program. To represent the scheme of Table 7.1 let us consider

unit vaccination-plan where the temporal qualification of the facts represents their

ual'idi,ty:

: - unit (vaccination-pIan (Age , Vaccine)) .

vaccination-pIan (age (0,0) , Ibcg,
vhb (1) I) th [2000, inf] .

vaccination-p1an (age (O ,2), [vip (1) , dtpa (1) , hib (1) ,

vhb(2))) th [2000, infJ.
vaccination_plan (age (0,3) , [menC (1)]) th [2006, infl .

vaccination-plan(age(0,4), Ivip(2), dtpa(2), hib(2)])
th [2000 , inf] .

As we can see, the inoculation of menC is valid only in temporal contexts after 2006

while the remaining ones are valid after 2000. To query about the next vaccine consider

unit next-vaccine/1:

r i- unit(next-vaccine(Vaccine)).

7,7. RELATED WORK

2 item :-
3 age (Person-Year , Person_Month) ,

4 vaccination_plan (age (Vac_Year , Vac_Month) , Vaccine):, 'i'iem l;:i_i:
,x;,::;:::,i:;i":)i,,

Predicate item/0 queries the (temporal) context about the age of the person for
whom it wants to compute the next vaccine (2), then it extends the context with
unit vaccination-plan (3) and iterates over all (eligible) vaccines until it finds one

that must be inoculated at or immediately after (L7) (recall that the facts of this unit
are ordered).

Finally, to illustrate, consider that unit person(Name, Birth-Date) implements pred-
icate a}e/2:

?- tl at 'Aug 10 2006' :)
person(john,'May 1 2006,) :>

(item, next (Vaccine) : > item).

Vaccine = lmenC (1) l

and if we repiace all the occurrences of the year 2006 by 2000 in the query above, then
the answer would be Vaccine = [v].p(2), dtpa(2), hib(2)1.

7.7 Related Wbrk

To the best of our knowledge, a temporal modular language where the usage of modules
is influenced by temporal conditions is a novelty. The related work known on this
subject is closer to the proposal of Chap. 6 where we already did a comparison with
other approaches, in Sect. 6.6 (page 73).

Nevertheless, for completeness reasons, we discuss some (possible) relations with the
language MuTACLP and the temporal architecture of Combi and PozzL Both com-
parisons have a similar structure: an applicational example is used to illustrate it.

In Sect. 7.6.2 (page 94) we provided the TCxLP version of the Briti,sh Nati,onali,ty Act
example of Sect. 6.6.1 (page 74). As we can see, the use of contexts allows for a more
compact writing where some of the annotations of the MuTACLP version are subsumed
by the annotation of the context. For instance, the rules of the MuTACLP version for
get-citizenship are far more verbose.

97

98 CHAPTER 7, TEMPORAL CONTEXTUAL LOGIC PROGRAMMING

A similar reasoning applies when comparing the TCxLP solution for workflow man-

agement systems (see Sect. 7.6.1) with relati,onal frameworks such as the one proposed

by Combi and. Pozzi in [CP0] where relational queries contained far more explicit

references to time that the contextuai version'

7.8 Conclusions

In this chapter we presented a temporal extension of CxLP where time influences the

etigibility of a module to be used in solving a goal. We consider that such interaction

between modularity and temporal reasoning comes naturaiiy and, as far as we know,

is original.

Besides the operational semantics for this language we proposed a procedure that

computes the least upper bound of the units annotation at runtime.

An interpreter together with a compiler for this language were presented, forming the

basis of a prototype implementation'

Several domains of applications were illustrated, namely legal reasoning, workflow

management systems and medicine.

Chapter 8

Language for Temporal Organisational
Information Systems

In this chapter we start with a revised and stripped-down version of the logical
framework ISCO (Information System COnstruction language). We then describe a
temporal extension together with a compilation scheme for this language.

8.1 Introduction

Organisational Information Systems (OIS) have a lot to benefit from Logic Program-
ming (LP) characteristics such as a rapid prototyping ability, the relative simplicity
of program development and maintenance, the declarative reading which facilitates
both development and the understanding of existing code, the built-in solution-space
search mechanism, the close semantic link with relational databases, just to narne a
few. In [Por03, ADNO4] we find examples of LP languages that were used to develop
and maintain OIS.

ISCO (Information System COnstruction language) [Abr01] is a logical framework for
constructing Organisational Information Systems. ISCO is an evolution of the previous
language DL [Abr00] *rd is based on a Constraint Logic Programming framework to
define the schema, represent data, access heterogeneous data sources and perform ar-
bitrary computations. In ISCO, processes and data are structured as classes which are
represented as typedl Prolog predicates. An ISCO class may map to an external data
source or sink like a table or view in a relational database, or be entirely implemented
as a regular Prolog predicate. Operations pertaining to ISCO classes include a query
which is similar to a Prolog call as well as three forms of. update, i.e. ISCO implements
Create, Read, Update and Delete (CRUD) access to Relational Database Management

lThe type system applies to class members, which are viewed as Prolog predicate arguments.

99

100 CHAPTER 8, LANGUAGE FOR TEMPORAL OIS

System.

In this chapter we propose to extend ISCO with an expressive means of representing

and implicitly using temporal information. As it should be expected, this evolution

relies upon the frameworks proposed in Chap(s). 6 and 7. Moreover, having simplicity

(syntactic, semantic, etc) as a guideline we present a revised and stripped-down version

of ISCO, keeping just some of the core features that we consider indispensable in a
language for Temporal OIS. Leaving out aspects such as access control [Abr02] does

not mean they are deprecated, only not essential for the purpose at hand. The main

motivation of this chapter is to provide a language suited to construct and maintain

Temporal OIS where contexts aren't explicit but impiicit (they are obtained throughout

the compiiation of this language).

This chapter is organised as follows: in Sect. 8.2 we review the ISCO language and in

Sect. 8.3 we present its temporal extension ISTO. Section 8.4 discusses a compilation

scheme for this ianguage and Sect. 8.5 compares it with other approaches. Finally, in

Sect. 8.6 we draw some conclusions.

8.2 Revising the ISCO Programming Language

In this section we present a revised and stripped-down version of ISCO focusing on what

we consider the required features in a language to construct and maintain (Temporal)

Organisational Information Systems.

8.2.1 Classes

When dealing with large amounts of data, one must be able to organise information in

a moduiar way. The ISCO proposal for this point are classes. Although ISCO classes

can be regarded as equivalent to Prolog predicates, they provide the homonymous OO

concept, along with the related data encapsulation capability.

Before presenting a formal description of classes, let us see an ISCO class that handles

data about persons, nameiy its name and social security number:

Example 6 Class Person

cLass person.
name: teat.
ssn: int .

8.2, REVISING THE ISCO PROGRAMMING LANGUAGE 101

In this example after defining the class name to be person, we state its arguments and
types: ssn (Social Security Number) type int(eger) and name type text.

Using a Definite Clause Grammar, the ISCO class syntax can be defined in the following
way:

Definition L2 Si,mple class sgntar

argument --> [NAME : typel.

Prom the definition above, we can see that a class is formed by a head and a (possibly
empty) set of arguments. The class head starts with the keyword class and is followed
by a descriptor. An argument definition its composed by its name concatenated with
rr:rr and an argument type (int, float, bool, text or date). This is the basic definition
of a class that we will enrich it as long as we add other features.

8.2.2 Methods

By defining class arguments we are also implicitly setting class methods for access-
ing those arguments. For instance, in class person we have the predicates ssn/1
and name/1. Therefore to query John's ssn, besides the (positional) Prolog goal ?-
person(john, S) . we can also state:

Example 7 John's soci,al securi,ty number

?- person(nane(ionn), ssn(N)) .

N = 123

rcz

Besides these

regular Horn
follows:

CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

implicit methods, there can also be explicit ones defined by means of

clauses. To allow for class methods, we enrich the rule for class as

class --> class-head, arguments , horn-clauses.

As an illustration of an Horn clause, consider that argument name of class person is

an atom with the structure 'SURNAME FIRST-NAME'. Therefore, to obtain the

surname we add the following clause to the class definition:

surname (Surname) : -
name (Name) ,

atom-chars (Name, Name-Chars) ,

append(Surname-Chars, [" | -], Name-Chars),
atom-chars (Surname, Surname-Chars) .

8.2.3 Inheritance

Inheri,tance is another Object Oriented feature of ISCO that we would like to retain

in our language. The reasons for that are quite natural since it allow us to share not

only methods, but also data among diflerent classes. The ISCO inheritance syntax is

obtained by replacing the class-head of Definition 12 by:

superclass --> [].

Consider class person of Example 6 (page 100) and that we want to represent some facts

(name, social security number and salary) about the employees of a given company.

Therefore, we clefine employee to be a subclass of person with the argument salary:

Exarnple 8 Class emplogee

cLass empLoYee: Person.
salary : i'nt .

8.2.4 Composition

As we already Sa\M, we have flve basic types: int, f 1oat, bool, text and date' In

order to have the OO feature of. composi,t'ion, we include ISCO possibility to rruse the

class definitions as a data type. Therefore, the type syntactical definition becomes:

8,2. REYISIIIG THE ISCO PROGRAMMING LANGUAGE 103

Suppose that we want to deal with the employees home address and have the possibility
of using the address schema in other places (suppliers, etc). For that we define a new
class address and rrdefine the employee class adding a new argument (home) whose
type is address:

Example I Class employee w,ith home address

cLass address.
street: teat.
number: int -

cLass empLoyee: person.
home: add,ress.
saLary: int.

The access to compound types its quite natural, for instance suppose that we want to
know John's street name:

Example 1,O John's home address

? - empLoyee (name (jottn) , home (adilress (street (S)))) .

S = upstreet

Actually, as the reader might see, there is no real need for the basic types since we
could develop one class for each. Nevertheless, because they are quite intuitive to use,
we decided to keep them.

8.2.5 Persistence

Having persistence in a Logic Programming language is a required feature to construct
actual OIS; this could conceivably be provided by Prolog's internal database but is best

accounted for by software designed to handle large quantities of factual information

efficiently, as is the case in relational database management systems. The semantic

proximity between reiational d"atabase query languages and logic programming lan-

guages have made the former privileged candidates to provide Proiog with persistence.

ISCO's approach for interfacing to existing RDBMS2 involves providing declarations for

an external database together with defining equivalences between classes and database

relations. As an illustration, consider that the employee facts are stored in a homony-

mous tabie of a PostgreSQl [SK91] database named db running in the localhost:

Example tL Erternal Databases

erternal (db-Li,nk , postgres (d'b , Localhost)) .

eoternal(db-Li,nk, efrPLoyee) cLass empLoyee: person
home: add,ress .

salary : i,nt .

Since the database table has the same name as the class, the employee inside

external term above is optional. Finally, we can specify the full class definition:

t04

Definition L3 ISCO class

CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

the

syntar wi,th ertemal DB references

-head,, o,rguments, horn-cLauses

e*ternaL, IcLass NAME], suPercLass

eaternal --> [].
eaternal --> [eaterno,L (DB-LINK)] .

e*ternaL --> [eaternaL (DB-LINK, RELATI0N-NAME)] '

arguments --) argument, arguments

o,rgument -. > [NAME : tYPeJ.

elationaldatabases,suchasLDAPdirectoryservicesorweb
services is out of scope for the present work. We shall stick with to RDMBS only'

8.2. REYIS/AIG THE ISCO PROGRAMMING LANGUAGE

basic_type --> [t,nt].
basic_type --> tfLoatl.
basic_type --> [booL].
bas,ic_type --> [teat].
basic_type --> [date].

105

8.2.6 Data Manipulation Goals

Under the data manipulation operations we inciude not only insertion, removal and
update but also query operations, i.e. Create, Read, Update and Delete access to
RDBMS. The (simplified) formal syntax of these operations can be described as:

Definition L4 Goal Defini,ti,on

F}om the definition above, we have that a goal is either a Prolog goal or a modification
goal. For illustrations of the first type of goals see Examples 7 and 10.

The modification goals (insert, delete and update) are based on simple queries, non
backtrackable and all follow the tuple-at-a-time approach, which is more consistent
with the usual Prolog operational semantics. As an example, suppose that we want to
insert the employee Smlth, update his address and then remove this empioyee:

Example 12 Modificati,on Goals

? - empLoyee (name (smi,th) , ssn (111) , saLary (20) ,
hone(address (street (up), number (1)))) +.

?- empLoyee(name(smith)) #

(h,ome (ad,dress (street (d,own), number (2)))) .

106 CHAPTER 8, LANGUAGE FOR TEMPORAL OIS

? - empLoyee (name (smith))

This concludes our overview of the simplified ISCO language. In the next section we'll

deal with temporal concerns.

8.3 The ISTO Language

In this section we provide a revised ISCO language with the ability to represent and

implicitly use temporal information. This temporal evolution of the ISCO language

will be called ISTO (Information System Tools for Organisations). The capability of

representing temporal information will be achieved by extending ISCO classes to their

temporal counterpart. As expected, in order to handle such temporal information

ISTO includes temporal data manipulation operations.

8.3.1 Temporal Classes

In pursuing our goal of simplicity, temporal classes are given by introducing the keyword

temporal before the keyword class. Therefore the class head syntax becomes:

superclass.

Facts of a temporal class have a temporal dimension, i.e. ali tuples have associated

a temporal stamp. In line with the other temporal languages proposed in this work,

these stamps will stand for instants or intervals (their precise definition is given in

Sect.8.3.2).

As an illustration, ciass employee can be temporal (Example 9), since it makes sense

that the salary and home address of a given employee evolves throughout time. On the

other hand class person should continue atemporal since the facts it stores shouldn't

evolve over time.

Example 13 Temporal class employee

temporal cLass emPLoYee: Person.
home: address .

saLarE: int.

8.4. COMPILATION SCHEME FOR ISTO

8.3.2 Temporal Data Manipulation

707

Here we present the temporal equivalent of the data manipulation goals described in
Sect. 8.2.6 (pug" 105), i.e. we provide a temporal query, insertion, removal and update
goals.

Again trying to keep the syntax as simple as possible we shall distinguish temporal
operations trom regulor ones by adding the operator "@" followed by a temporal de-
scriptor annotation. The interval representation is the standard one [t1, tZ] and
stands for all time points between T1 and T2 (where T2 > T1). Moreover, in order to
be able to handle in-annotated information (see page 13), we also ailow another type
of intervals [T1 ; T27 to represent some time points (not necessarily ail) between Tt
and T2, i.e. [T1 ; T2) is a subset of [T1 , T2). The ISTO temporai operations will be:

Although an instant T can be represented by the interval [T, T] , to ease the reading
we use just T. As an illustration consider that we want to know John's street name in
the year 2007:

Example L4 John's street nante in the year 2007

?- empLoyee(name(john), home(ad,itress (street (s)))) @ 2007

.9 = upstreet

The goal above is a temporal version of the one we saw in Example 10 (page 103).

8.4 Compilation Scheme for ISTO

The ISTO compilation scheme is describe along the same incremental line that we saw
in the language presentation. As expected, the compilation of the non-temporal part
yields CxLP and from the temporal extension we target TCxLp.

108

8.4.1 Classes

CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

The translation from an ISTO class to CxLP can be roughly described as: every

class becomes a corresponding unit, with the class arguments transformed into unit

arguments and predicates for accessing these arguments. For instance, class person of

Example 6 (page 100) is compiled into the CxLP unit:

: - unit (person (OID , NAME , SSN)) .

oid(0ID).

name (NAME) .

ssn(SSN).

item : - person (OID , NAME , SSN) .

The unit argument gID stands for Object ldenti,fier and as the name implies, is used to

discriminate a given tuple in a class (and throughout the database in the corresponding

superclass as we will see). The predicate item/0 simply fetches facts from the internal

database and binds the unit arguments. In the Sect. 8.4.5 (pug* 110) we see how to

access external databases.

8.4.2 Methods

The compilation of Horn clauses is trivial since they remain unaltered. Regarding

the implicit methods resulting from the class arguments, we already saw them in the

previous section.

8.4.3 Inheritance

Since CxLP already has dynamic inheritance, it is rather simple to simulate the single

static inheritance of ISTO. Take for instance the class employee of Example 8 (see

page 102), subclass of person. Since person is a toplevel class, to use it we can simply

do:

lperson(OrD, NAME, ssN)] :((item' "')

whereas to use employee we do:

Iemployee (oID , SALARY) , person (oID , NAME , SSN)]
:((iten, ...)

8.4. COMPILATIOI\I SCHEME FOR ISTO 109

As mentioned previously, OID is used to joi,n a class with its superclass. Finally, class

employee of Example 8 is compiled as:

: - unit (enployee (OID, SALARY)) .

oid(0ID).

salary (SALARY) .

item : - enployee (OfO, SALARY) ,

: ^ item.

As we can see predicate item/O first invokes the local database and then calls item in
the superclass, this way building the whole tuple. This definition requires the context
to include the unit(s) corresponding to the superclass(es).

8.4.4 Composition

For the compound types the idea is similar to the one we saw with inheritance, i.e.

we use an i,denti,fi,er to relate an argument to its compound type. In this case instead
instead of using this identifier to perform a join operation, we use it as a poi,nter. To
better understand let us see the compilation of the employee class with home argument
(see Example 9 in page 103):

* Bxample L5 Compi,lati,on of employee wi,th home address.

,
oid(0ID).

home (address (G0AL)) : -

8 saLary (SALARY).

In Example 10 (pug. 103) we saw that a query to an employee address has the
structure home(address(GOAL)). The unit above explain how this query is handled:
G0AL is resolved in a context with unit address. Moreover, the unit arguments

110 CHAPTER 8, LANGUAGE FOR TEMPORAL OIS

are obtained by binding the address object identifier with the employee argument

H0ME-0ID, i.e. HOME-OID can be regarded as a pointer for the home address.

8.4.5 Persistence

Due to the possibility of having different backends, persistence related compilation can

be more elaborate than what we are going to present. Nevertheless we consider the

explanation below sufficient to grasp how it's done. Returning to the employee class,

its modification into an external class presented in Example 11 (page 104) modifies the

item predicate to:

item :- [isto-backend(db-Iink, employee)1 :(
query(enployee(OID, H0ME-OID, SALARY)),

:^ item.

8.4.6 Data Manipulation Goals

The compilation of the manipulation goals is quite simple, in fact we already saw how

the query translation could be obtained when we presented the Persi,stence. Knowing

that unit isto-backend also implements insert/1, delete/1 and update/2 it is

simple to determine the compilation of the modification goals. For instance, the remoual

of emplogee Smi,th that we saw in Example 12 (page 105) is translated into:

t ? - [employee (0ID , HOME-0ID , SALARY) ,

person(0ID, NAME, SSN)l :((item, name(smith)),
3

Iisto-backend (db-link , employee)J : (
delete (enployee (otD , H0ME-0ID , SALARY)) ,

, listo-backend(db-1ink, person)l :(
delete (person (0ID , NAME, SSN)) .

In the goal above we start by querying the whole tuple of the employee Smith (lines

1 and 2) and them we remove it from the employee backend (lines 4 and 5) and from

the person backend (lines 7 and 8).

8.4.7 Temporal Classes

Before presenting the compilation of temporal classes and goals one must observe that
non-temporal classes must behave as if they were valid throughout the entire time line.

Let us now see the result of compiling the temporal class employee from Example 18
(page 106):

: - unit (enployee (0ID, HOME_0ID , SALARY)) .

oid (0ID) .

8.4. COMPILATIOAI SCHEME FOR ISTO

Such a behaviour can be obtained simply by adding
For instance, to the unit person above it is sufficient

person(_, _, _) th [0, inf].

111

a fact to each nontemporal unit.
to add the fact:

< (item, GOAL)

(see Example 15 in
the unit arguments,

home (address (G0AL)) : -
Iaddress (H0ME_OID , STREET, NUMBER)] :

salary (SALARY) .

item :- :^ item.

The difference from the compilation of the nontemporal version
page 109) is that there is no need for predicate item to instantiate
since temporal context search will do that implicitly.

8.4.8 Temporal Data Manipulation Goals

p

The translation of a temporal query will result in a goal in a temporal context. The
ISTO query of John's street name in 2007 (see Exampte 14 in page 107) is translated
into:

? - [employee (0IO, H0ME_OID , SALARY) ,
person(0ID, NAME, SSN)l (at 2OOT) :<

(item, nane (john), home(address (street (S)))) .

Introducing temporal modification goals needs further considerations. First of all, as
mentioned, these goals are extra-logical. Moreover, since now the th-annotated facts
can change at runtime, to use the (simplifled) semantics of TCxLP one must ensure that
the backend of a temporal ciass always stores the least upper bound of th-annotated
unit temporal conditions. In order to guarantee that, every insertion of a th-annotated
temporal condition must induce a recomputation of the least upper bound. As an
iliustration consider that John's OID is 1 and that is salary was 15000 between 2001
and 2006 and 20000 between 2007 and 200g:3

3For simplicity reasons in this illustration we ignore the home address argument.

tL2 CHAPTER 8. LANGUAGE FOR TEMPORAL OIS

employee (1, 15000) tir [2001, 2006] '

enployee (1, 2OOOO) tn 12007, 20081 '

Suppose the following ISTO goal to remove this employee information between 2005

and 2006:

?- (employee(name(john)) -) @ [2005, 2006] '

it changes the temporal conditions in the foliowing way:

employee (1, 15oOO) tir [2001 , 2004) '

employee (1, 2OOOO) tn 12007, 20081 '

Finally, if we add the information that John's salary between 2005 and 2006 was 20000:

?- (employee(name(john), salary(2OOOO)) +) @ [2005, 2006]

then the least upper bound must be recomputed, Ieading to:

employee (1, 15000) ttr [2001 , 2004) '
employee (1, 20OOO) tfr [2005, 2008] '

8.5 Comparison with Other Approaches

The temporal timestamp of ISTO can regarded as the counterpart of the valid time that

we saw in temporal databases (see Chap. 3). Although ISTO has no concept similar to

the transaction time, we consider that one could implement this notion integrating a

Iog in the isto-backend unit. However this capability is beyond the scope of the ISTO

initial concerns. On the other hand, ISTO contertual ti,me enables an expressivity that

lacks in most database products with temporal support. only in the oracle workspace

Manager (see page 34) we find a concept (workspace) that is similar to our temporal

context.

In this work we overviewed several logical languages that have modularity lOO, others

that provide temporal reasoning or even persistence. ISTO is the only one that

encompasses all those features.

8.6 Conclusions

In this chapter we presented a revision of a state-of-the-art logical framework for

constructing ols called Isco. we proceeded to introduce an extension to this lan-

guage called ISTO, that includes the expressive means of representing and implicitly {

8.6. CONCTUSTOATS 113

using temporal information. Together with a syntactical deflnition of ISTO we also

presented a compilation scheme from this language into Temporal Contextual Logic

Programming.

ISTO can take advantage of the experience gained from several real-world application
developed in ISCO in order to act as backbone for constructing and maintaining

Temporai OIS.

Chapter I

Conclusions and Future Work

This short chapter presents the main conclusions of this work along with several
pointers for future work.

9.1 Conclusions

In this work we started with a modular logic programming language called Contextual
Logic Programming (CxLP) *rd presented a possible optimisation for it throughout
abstract interpretation. Moreover, we coupled it with a consolidated temporal rea-

soning language called Temporal Annotated Constraint Logic Programming, for which
two different paths were considered:

. one where those languages were (almost) independent, i.e. there was no implicit
relation between Time and Modularity;

o another where Time is integrated with and affects Modularity, more specifically,
it is the ti,me of the contert that helps decide if a given module is eligible or not
for a computation.

For both approaches we described the language syntax and semantics (operational),
provided an interpreter, a compilation scheme and illustrated its usage in various
applicational domains.

It was not our goal to develop another temporal or modular theory, but to choose the
ones that could have a natural integration within a logical framework. Although several

criteria were used as a foundation for our choice, we would like to highlight pragmati,cs:

the ianguages should be expressive enough to conveniently represent common or usual
reasoning tasks in a temporai modular logic environment. Morever, the languages had
to have a practical implementation.

115

116 CHAPTER 9. CONCLUSIOATS AAID FUTURE WORK

Finally, and relying upon these formal languages, we extended a high level language

for OIS with an expressive means of representing and implicitly using temporal infor-

mation.

9.2 Future Work

The possibilities for future work are so vast that we must restrain a little and present

just the ones that we would like to tackle in the near future:

we would like to apply the ISTO language to real world problems. Perhaps,

starting with University Information Systems, since this was the main application

domain of its nontemporal predecessor.

There are very promising developments in the fields of business intelligence and

information retrieval which would stand to gain from the integration of temporal

information.

ISTO would also benefit from a logical semantics to the modification goals, by

recurring to frameworks such as Transaction Logic [8K94].

o A declarative semantics for Temporal Contextual Logic Programming would

provide a more solid theoretical foundation.

o The relation with other frameworks such as temporal XML lWZZ\\l or Con-

straint Handling Rules [Friig4a] could be of great interest.

Another appealing direction is looking into ways of integrating Logic Program-

ming based tools like as ISTO into Content-Management Systems such as Plone

or Mambo. It is our belief that these CMS will benefit from having plug-ins

with the expressiveness provided by Constraint Contextuai Logic Programming,

namely unification and constraint solving.

The decision of whether a given module is eiigible or not for a computation could

be extended in order to incorporate other concepts such as Space, etc.

Finally, we also consider that it would be interesting to use the logical frameworks

described in this work to model OS-level applications such as the Mac OSX backup

system, Time Machine.

Appendix A

GNU Prologlcx

A.1 Ttrtorial

A.1.1 Unit Directive

A unit is program where the first term is the unit/1 directive. The argument of this
directive is a term, that in its simple form is just an atom that specifies the unit name.

As an illustration consider the following unit defining the predicate factori,al:

Example 1-6 Uni,t factori,al

aun(N, 1, F).

aua(0, F, F).

N) 0,
T1 i,s T*N,
N1 i,s N-1,
aua(Nl, 71, F).

The only difference between the program above and a regular Prolog program is the

unit/1 directive in the first line that declares the unit name to be factorial. The
remaining code should be familiar to any Prolog programmer. Moreover, since we

7t7

118 APPENDIX A. GAIU PROLOG/CX

have a predicate-based approach, other units can also define predicate factorial/2
or aux/3 that no collision will occur.

A.L.z Unit Arguments

In Prolog its normal to find a proliferation of predicates arguments whenever a global

structure is to be passed around. In the tail recursive version of factorial that we saru

in Example 16, variable F is passed around over and over in aux/3, until it gets instan-

tiated in the end. Moreover, this is a standard programming practice in i,terati,ue/tai,l

recurs'iue approaches to other predicates such as reverse/2, sum-list/2.

In Contextual Logic Programming we can avoid this proliferation, by considering some

variables to be global. These variables are called uni.ts arguments and [AD03a] claims

that they are an essential addition to this programming model. A unit argument can

be interpreted as a sort of. un'it global variable, i.e., that is shared by all clauses defined

in the unit. For that consider another version of unit f actorial using unit arguments:

Example L7 Uni,t factori,al wi,th arguments

aua(N, 1) .

aua(0, F).

Nl 2 0,
Acc2 is Accl * N1 ,

N2 is N1-1,
aua(N2, Acc?) .

The reader should notice that in the unit directive, besides the unit name we also have

unit arguments: variables N and F. These arguments are unit global variables (all the

occurrences of N and F refer to the same variable), therefore we can avoid passing the

(uninstantiated) result over and over again in the recursive call of aux/2: when the first

argument of atx/2 reaches 0, we instantiate the unit argument F. Moreover, predicate

item/0 assumes unit argument N is instantiated when the unit is invoked (we will see

how to do this in the next section).

4,1. TUTORIAL 119

Finally, both units can be part of the same CxLP program because although they have

the same name (f actorial) they have different arities (f actoriat/0 and factorial/2).

A.1.3 Context Extension

This section illustrates the usage of the units developed above. Let us start by obtaining
the factorial of 6 recurring to the first unit:

? - factorial : > factorial (6 , N) .

N=720

In an informal way we can read this goal as: reduce factorial(6, F) in the enriched
environment with the definitions of the unit factorial.

In a similar way, we can use the unit f actorial/2 (with arguments) to solve the same

problem:

?- factorial(6, N) :> item.

N=720

In this case we can read it as reduce the goal item in the enriched environment with
the definitions of f actori.al /2, instantiating the unit flrst argument to 6. In this case,

this would mean that the rule for item was item :- aux(6, 1).

The operator : > is called contert ertens'ion, and for now consider consider that as

extending the GNU Prolog base predicates with the ones stated in the unit. This
operator will become more clear below.

4.L.4 Current Context

Given a CxLP program we can combine at run-time its units leading to the notion
of context. The compiler GNU Prologlcx uses lists of units for representing contexts,
where the empty list stands for the empty context.

To explicitly handle contexts, there is an operator : < called curcent contert, where
: < C unifies C with the current context. As a simple demonstration of this operator,
consider a modified version of the query for the factorial of 6:

?- :(C-start,
factorial :> (factorial(6, -F), :(C-fact),
: (C-end.

120 APPENDIX A, GATU PROLOG/CX

C_end = tl
C-fact = [factorial]
C_start = tl

In this example we decided to use variable -F because we are only interested in the

instantiation of the contexts. Let us start with the empty contexts C-start and C-end.

They are empty because the place where they occur is not under the scope of any unit.
The context C-f act on the contrary, is inside the environment of the unit f actorial,
therefore it should be no surprise that C-fact = [factorial].

Moreover, and remembering that the empty list is a member of all the lists, it should

be clear why : > is a context extension: we extended the empty context [] with the

unit f actorial, yielding the context [f actoriat I t] I , i.e. [f actorial].

A similar modification can be done to obtain the contexts for the case of factoriaL/2:

?- :(C_start,
factorial(6, -F) :> (item, i(C-fact),
: (C-end.

C_end = tl
C-fact = [factorial (6, 720)1
C-start = tl

The difference from the previous example is the context C-fact = [factorial(6,
720)), r.e. from a simple context inspection we know that the factorial of 6 is 720.

Therefore, it should be clear why we state that units arguments make contexts more

transparent.

A.1.5 Context Tlaversal

Until now we just saw simple contexts, namely empty or single contexts. Nevertheless,

contexts can be more elaborated and as we are going to see, they are a natural way

to represent dynamic inheritance. Dynamic inheritance allows objects to change and

evolve over time. Since base classes provide properties and attributes for objects,

changing base classes changes the properties and attributes of a class. More specifically,

dynamic inheritance refers to the ability to add, delete or change parents from objects

(or classes) at runtime.

To illustrate this feature we are going to build an example based on the cd (change

working directory) of the Unix system V shell. Since this command is strongly con-

nected not only to the di,rectory tree but also to the user that is issuing it, we also

4.1. TUTORIAL t2L

decided to represent these concepts.l Regarding the unit user we represented just the
user name and its home directory inode:

Example 18 Uni,t user

user(foo, 4).
user (bar, 5) .

user(baz, 6).

name(NAME).
h,ome(H0AE).
pwd(llal,[E).

In this unit besides the user/2 facts, we have one predicate to access each unit
argument and another called item to instantiate the unit arguments using the facts
retrieved from the database. Moreover, instead of the full path to the user home

directory we decided to represent just the inode number of that directory. Using this
number-based approach for directories, we represented a typical Unix filesystem as:

Example 19 Uni,t fs (filesystem)

fs(1, /, nnl).
fs(2, bi,n, 1).
fs (3, home, 1) .

fs (4, foo , 3) .

fs (5, bar, 3) .

fs (6, work, 4) .

fs (7, papers , 6) .

In the unit above, each directory is represented by a triple: inode number, name and
inode of its parent directory. This example represents the file system of Figure A.1.

lSince directory permissions didn't bring any advantage to illustrate concepts of CxLP we decided
to omit them.

122 APPENDIX A, GATU PROLOG/CX

Figure A.1: File system

For instance, directory number 4 is /home/foo: 3 (home) is the parent of 4 (foo) and

1 (/) is the parent of 3.

Let us see a goal to find out if the name of user home directory is the same as the user

name. This can be achieved by a simple join between unit fs and unit user:

?- user(U, I) :> item, fs :> fs(I, U, -).

4

foo ?;

r-5
U=bar

Having defined these two units we can now see the intended behaviour of the cd

command. Suppose that user foo logs into the system and issues the command cd

work, i.e. this command is executed in the contert of user(f oo, -) and in the filesystem

seen above (ts). Using CxLP we can expect something like:

?- fs :> user(foo, -) :) (item, cd(work) :> check).

Therefore predicate check/0 of unit cd must ask the context the working directory

and then check if work is a subdirectory2 of it. Therefore unit cd could be something

like:

:- unit(cd(ARG)).

check : - pwd (t4lD) ,

fs (-, ARG, }'ID) .

Since predicate pwd/1 isn't defined in this unit, is performed a search in the context

for the topmost unit that defines this predicate. Thefore, although pwd(WD) was called

T_I-

U=

2We are just going to consider arguments that specify a direct subdirectory of the current one.

4.1. TUTORIAL 123

in the context [cd(work) , user(f oo, 4), f sl it is going to be solved in the reduced

context [user(f oo , 4) , f sJ, making variable t,ID = 4.

We are going to explain in detail these different types of contexts in section A.1.9 but
for now imagine that the context is shortened until the topmost unit as a rule for the
goal (of course that if none is found, the goal fails).

A similar reasoning applies to the other goal of this rule, i.e. f s (-, work, 4) is called

in context [cd(work), user(foo, 4), fs] but since only unit fs has a rule for it, it
is going to be solved in the context [f s].

A.1.6 Context Switch

But what happens if another cd command follows as in:

?- fs :> user(foo, -) :> (item, cd(work) :>
(check , cd (papers) : >

check)) .

The last check/O is solved in the context [cd(papers), cd.(work), user(foo, 4),
f s1, but this goal is going to fail because when it asks for pwd(WD) its going to obtain
WD = 4 (lhomelfoo) instead of tilD = 7 (fhomeffoofwork). This is because only unit
user has a rule for pwd/1. Therefore, since cd changes the working directory it is

reasonable to add a rule for pwd/l. Unit cd could then be:

:- unit(cd(ARG, NEW-WD)).

check :- pwd(hlD),
fs (NEW-WD , ARG, WD) .

pwd(NEW-WD).

Nevertheless this formulation is stil incorrect. To see why, consider again the example
above adapted to the new formulation of cd command:

?- fs :) user(foo, -) :> (item, cd(work, -) :> check).

Again, when solving check/O, the goal pwd(WD) is invoked in context [cd(work,-),
user(foo, 4), fsl and since now rnit cd/2 is the topmost unit with a rule for this
goal, it is this unit that is going to resolve it instead of unit user. In fact, what we

would want to do is call pwd/1 in the context obtained from the current, ignoring its
head.

124 APPENDIX A. G.n\rU PROLOG/CX

To solve this problem another operator called context switch is presented C : < G and

stands for solving goal G in context C. This leads to the correct formulation of unit cd:

: - unit(cd(ARG, NEW-I^ID)) .

check : -
;',1-l:1 rrr> ,

fs (NEW-WD , ARG, trID) .

pwd(NEIII-WD).

Now check/0 first queries for the current context (operator : <) and then solves pwd/1

in the subcontext obtained from ignoring the head of the current context.

A.L.7 Supercontext

Using the immediate subcontext to solve a goal is so recurrent that an operator was

proposed for that purpose. This operator is denoted by : ^ G is called supercontext

and behaves as if defined by the Prolog clause:

:^ c :- t-l Cl , C :< G.

Using this operator, the unit cd becomes:

: - unit(cd(ARG, NEW-I4ID)) .

check :- :^ pwd(WD),
fs(NE!,I-WD, ARG, WD).

pwd (NEW-WD) .

A.1.8 Guided Context Traversal

Until now we just considered paths that were immediate subdirectories of the current

one. But there is a variation of the command cd where no arguments are given. In
this case it must change to the home directory of the user currently logged. How can

we do this in our framework? If the argument of cd is empty (or nil a"s we are going to

represent), then pwd(tJD) must be solved in the greatest subcontext of the current one

that contains unit user in its head.

Of course that we could do this by considering the suffix of the current context that
contains unit user in his head and then, by a context switch, solve pwd(WD) in this

4.1. TUTOHIAL t25

suffix. Again, since this technique is so widely used, there is an operator U::G called
gui,ded contert trauersal, for that.

Therefore, we could add the following rule in unit cd:

check :- ARG = nil,
!,
user(-, -) :: pwd(NEhr-WD).

This operator behaves as if defined by the Prolog clause:

U :: G :- :< C, GC = tUl_1, suffixchk(GC, C), GC :< G.

Where suff ixchk(SUFFIX, LIST) is a deterministic predicate that succeeds if SUFFIX

is a suffix of LIST.

As an iliustration, consider the following sequence of. cd commands:

?- fs :> user(foo, _) :> (item, cd(work, _) :>
(check, cd(nil , NEW-l,rD) :> check)).

NEW-WD = 4

as expected, 4 is the inode of foo home directory.

A.1.9 Calling Context

Suppose that besides regular user logins we also want to have ftp anonymous login. In
this case just a subtree of the current filesystem is visible, i.e. the root of the filesystem
is changed. To incorporate the chroot (change root) command to our framework
consider a new unit chroot defined as follows:

: - unit (chroot (IN0DE)) .

root(IN0DE).

where INODE is the inode of the new root.

Of course that unit fs must reflect these changes, i.e. when asked for fs(IN0DE, /,
-) it must answer according to the latest changes of root in the system. Moreover,
if no change has occurred, it must have a default root of the system. The intended
behaviour can be illustrated with the following goal:

Example 20 (Sequence of chroots)

L26 APPENDIX A, GAIU PROLOG/CX

chroot(3) :> (fs(12, /, -),
chroot(4) :> fs(13, /, -))).

11 = I
12 = J
13 = 4

From a carefuli observation of the goal above we can see that fs(Il, / , -) is called

in the context [fs] and resolved in the same context; fs(I2, /, -) is called in the

context [chroot(3), f s] but resolved in the context [f s]; fs(I3, / , -) is called in

the context [chroot(4), chroot(3), fs] but resolved in the context [fs], i.e. all

have different calli,ng contert but the same current contert.

Therefore, we can say that the definition of fs(I, /, -) depends of the content of

the calling context, i.e. from the latest root in the calling context. Since there is an

operator to obtain the calling context denoted by , > C it is rather straightforward to

define fs(I, /, -):
fs(I , /, nil) :-

:> C,
C :< root(I).

In this rule we start by inspecting the calling context (,> C) and then resolve the goal

root(I) in this context, by performing a context switch.

Finally, since root /t may not be defined in the context (this is what happens in f s (I1,

/ , -) of Example 20), there must be a default definition for it in unit f s (in our case

is root (1) .).

A.1.10 Lazy Call

Since evaluating a goal in the calling context is done quite often, another operator

denoted by : # GoaI is available. This operator behaves as if defined by the Prolog

clause:

:# G :- :> C, C :< G.

Thefore using this operator unit f s can be defined by:

:- unit(fs).

"/" def ault root
root (1).

4.1, TUTORIAL

fs(IN0DE, /, nil) :-
:# root(INODE).

fs (2, bin, 1) .

fs (3, home , 1) .

fs (4, foo , 3) .

fs (S, bar , 3) .

fs(6, baz, 3).
fs (7, work , 4) .

fs (8, papers , 6) .

t27

728

4.2

APPENDIX A. G,NIU PROLOG/CX

Reference Manual

A.2.L Introduction

In this section we present the Contextual Logic Programming directives, operators and

predicates that are part of the GNU Prolog/CX implementation.

A.2.2 Directives

unit/1

Templates

*111 (+unit
-des cript or)

Description

unlt (Na.ure) declares unit Name if the argument is an atom, otherwise declares a unit

whose name is the principal functor of Name and whose arguments are the arguments

of Name.

The type unit-descriptor is either an atom or a compound term with the struc-

names.

Errors

None.

Portability

CxLP directive.

A.2.3 Operators

Context Switch - :</2

Templates

:((+unit-descriptor-1ist, +ca1lable-term)

4.2. REFEREI{CE MANUAL

Description

Context :(Goal evaluates Goal in context Context, ie. totally bypassing the current
context.

Errors

None.

Portability

CxLP operator.

Current Context - :</L

Templates

: < (*unit-descriptor-Iist)

Description

:(Context unifies Context with the current context.

Errors

None.

Portability

CxLP operator.

Calling Context - :>/1

Templates

:) (-unit-descriptor-list)

Description

:) Context unifies Context with the calling context.

Errors

None.

L29

130

Portability

CxLP operator.

Context Extension - :>/2

Templates

APPENDIX A. GI\IU PROLOG/CX

: > (+unit-descriptor, +ca11ab1e-tern)

Description

Unit :) GoaI extends the current context with unit Unit before attempting to reduce

goal Goa1. This operator behaves as if defined by the Proiog clause:

U :) G :- :(C, tulcl :(G.

Errors

None.

Portability

CxLP operator.

Guided Context Ttaversal - :: /2

Templates

: : (+unit-descriptor, +ca11ab1e-term)

Description

Unit : : Goal behaves as if defined by the Prolog clause:

U :: G :- :(C, GC = tul-1 , suffixchk(GC, C), GC :< G'

Where suff ixchk/2 is a deterministic predicate where suff ixchk(SUFFIX, LIST)

succeeds if SUFFIX is a suffix of LIST.

Errors

4,2, REFERENCE MANUAL

None.

Portability

CxLP operator.

Supercontext - :^/t

Templates

: ^ (+caI1abIe_term)

Description

^ GoaI evaluates Goal in the context obtained by dropping the topmost unit of the
current context. This operator behaves as if defined by the Prolog clause:

:^ G :- :< [_lC], C :(G.

Errors

None.

Portability

CxLP operator.

Lazy Call - :#/t

Templates

: # (+ca1lab1e_term)

Description

GoaI evaiuates Goal in the calling context. This operator behaves as if defined by
the Prolog ciause:

:# G :- .;' C, C :(G.

131

t32

Errors

None.

Portability

CxLP operator.

A.2.4 Utihties

current-unit/2

Templates

current-unit (?atom, ?i.nteger)

APPENDIX A, G.NIU PROLOG/CX

Description

current_unit (Name, Arity) succeeds if there is a unit Name with Arity arguments'

This predicate is re-executable on backtracking and can be thus used to enumerate all

the units.

Errors

None.

Portability

CxLP predicate.

Appendix B

Constraint Logic Programming

E}.1 Introduction

Formally, a Constraint Satisfaction Problem (CSP) consists of a tupie (V,D,C) where
7 is a set of variables, D their domains and C the set of constraints to be satisfied,
i.e. all CSP have the following abstract structure:

o there are variables to instantiate;

o the variables range over some domain;

o the solutions must satisfy a set of constraints.

The Constraint Logic Programming (CLP) scheme CLP(X) [JL8z, JMg4], has been
proposed as a generalisation of Logic Programming to deal with constraints in some
arbitrary domain. In the CLP(X) scheme, the parameter X refers the speciaiised
domain of the constraints. More specifically, to the:

o domain of the variables

o language of constraints

In the following section we will briefly overview the domain and language of the main
constraint domains.

133

134 APPENDIX B, COAISTRAINT LOGIC PROGRAMMING

8.2 Constraint Domains

8.2.L Booleans: CI,P(B)

o Domain: boolean (True/False).

o Language: equality (:) of well formed formulas on the usual boolean operators

(-, A, V, . . .).

8.2.2 Pseudo-Booleans: CIP(PB)

o Domain: boolean variables (0/1).

o Language: a relation of the set {:, (, S, >, >} applied to pseudo-boolean terms

(i.e. arithmetic expressions with operators {+, -,'})'

8.2.3 Rationals/Reals: CLP(R)

o Domain: rational (real) variables.

o Language: a relation of the set {:, *,{,{,>,>} applied to linear terms (i'e'

arithmetic expressions built with operator {+})'

8.2.4 Finite Domains: CLP(FD)

o Domain: a finite set of (ordered) values, possible interpreted to some numerical

domain.

o Language: quite varied.

Finite clomains subsume booleans and pseuclo-booleans. All CLP(B) and CLP(PB)

problems can thus be used as finite domain problems, declaring variables to be in the

domain {0,1}.

8.3 Constraint Solvers

There are two types of constraint solvers in CLP:

8,3. COAISTRAINT SOLVERS

complete solvers: if it is guaranteed that there is an infer function that detects
contradiction;

incomplete solvers: if it is not guaranteed that the infer function always detects
contradiction. In this case, the solver is augmented with a second constraint
store, where all the constraints whose effects have not been fully assessed. are
maintained.

Regarding the properties of constraint solvers, they:

must be incremental. The addition of a constraint must cause as little computa-
tion as possible. The later retraction of a constraint (upon backtracking) must
also be as effortless as possible.

must be efficient;

must be sound;

might not be complete.

Answers

LP provides definite answers: the answers are the most general terms that make
the query consistent with the program.

CLP also provides definite answers if the solvers are complete. If the solver is
incomplete, the answers are conditional: they represent terms that make the
query consistent with the program.

B.3.1 Incomplete Constraint Solvers

Incomplete solvers are used in domains where no general algebraic theory exists (or is
efficient). Rather than guaranteeing that a set of constraints is consistent, incomplete
constraint solvers aim at reduci.ng the possible values of the variables so as to prune the
search for solutions. These solvers are based on local propagati,on, that can be briefly
described as:

if the domain of a variable is reduced by some constraint, all constraints
invoiving that variable are awaken to check whether the domain of other
variables can be further reduced. If that is true, the procedure recurs.
otherwise it stops, and is ready to handle further constraints.

135

136 APPENDIX B. COT\ISTRAINT LOGIC PROGRAMMING

Local propagation is usually much more efficient that algebraic methods, but requires

the use of a complementary enumeration procedure'

If all that is required is one solution, then incomplete solvers are usually preferably. If
one needs all solutions, then the trade-off is uncertain'

8.4 Finite Domains

There are three types of constraints in the finite domains:

declaration of finite domain variables and their domains'

general constraints on these variables. Such constraints are used actively to

reduce the initial domains, before and during the enumeration.

enumeration predicates. These predicates are used to find solutions. The reduced

domains of some variabies can contain eiements that do not belong to a solution.

If these vaiues are assigned to the variables, other domains are eventually reduced

to the emptv set, this way detecting unsatisfiability'

8.4.L Finite Domain Solvers

The finite domain solvers are based on local propagation and can be formalised as

constraint networks where:

variables are the nodes of the network;

constraints are the arcs of the network.

8.4.2 Network ConsistencY

There are three types of network consistency:

r Node consistency: any value in the domain of a variable A that is not consistent

with the constraints on that variable alone must be removed. Is quite inexpensive

to maintain, but it has limited pruning capabilities'

o Arc Consistency: any value in the domain of a variable A that is not supported

by a value in a variable B for which there is an arc A-B, must be removed. It is

more expensive to maintain and, sometimes the extra effort does not pay off in

terms of increased Pruning.

8.4, FIIf/TE DOMAINS

o Path Consistency: any value in the domain of a variable A, which is either
not supported by a value in variable B for which there is an arc A-B, or by a
variable C for which there are arcs A-B and B-C, must be removed. It is still
more expensive to maintain and quite ofrben it does not increase domain pruning
significantly.

Since node and arc consistency can leave vaiues in the domain of a variable that cannot
be part of a solution, they are not complete.

8.4.3 Constraint Propagation (CP) vs. Backtracking

The advantages (+) and disadvantages (-) of constraint propagations versus backtrack-
ing are:

- in the early stages of a program CP spends a large time inspecting values of the
variables domains, possibiy to verify that they are X-consistent.

* in the later stages of the programs, CP has to instantiate less values for the
variables, since their domains have been pruned by constraint propagation.

+ cP anticipates the detection of failures, and thus backtracking.

+ CP prevents irrelevant backtracking. By anticipating backtracing, it does not
backtrack to the urong choice points.

8.4.4 Constraint Propagation and Heuristics

There are two major procedures to speed up the execution of constraint solvers:

1. reducing the number of alternatives throughout constraint propagation;

2. guessi,ng the right alternatives recurring to heuristics (which are often problem
dependent).

Regarding finite domains, there are two choice points in the enumeration phase:

1. the variable to instantiate next;

2. the value to instantiate the variable with.

t37

138 APPENDIX B. COAISTRAINT LOGIC PROGRAMMING

B.4.5 Advanced Techniques

So far, choice points were only considered in the enumeration phase. A conjunction

of constraints was assumed in the constraint declaration phase to set up a unique

constraint network. However some applications require the introduction of disjunctions

in the constraint speciflcation phase. The possibilities for circumventing this problem

are:

o delay the choice as much as possible;

o derive common information.

B.4.6 Global Constraints

Constraint solvers based on local propagation do not detect global inconsistency over

larger sets of constraints in the network. Maintaining k-consistency (consistency of

all sets of k variables) is very expensive (path consistency maintains 3-consistency,

etc). However, special and important cases like alldifferent, cumulative, anoll$r

diffn and cycle, might be handled separately'

8.4.7 Optimisation Constraints

In many applications one is interested not only in satisfying a set of constraints but

also in optimising (minimising or maximising) some objective function'

B.5 Defeasible Constraints

In several applications to keep the deciarative style of programming, it is necessary to

consider sofb constraints, i.e. constraints that might be reiaxed to make the problem

solvabie. This was the motivation of Hierarchical Constraint Logic Programming (or

HCLP for short), where constraints were assigned some preference weight'

The goal of a HCLP program is therefore to compute a solution (or solutions) that

complies with:

o optimisation, i.e. satisfies as much constraints as possible;

o satisfaction, i.e. satisfies a sufficient number of constraints.

8.6. CONCLUSIONS

E}.6 Conclusions

139

o So far, finite domains are the most successful domain of application of CLP, being
more efficient than Operations Research approaches.

o Complete solvers, namely the ones for linear constraints over rationals, are less
efficient than operations Research packages for very large problems.

o Programming a cLP application is stil an engineering task. one has to:

- find the best constraint solving technique;

- discover heuristics applicable to the problem;

- introduce redundant constraints to help the (incomplete) constraint solver;

- adapt, if possible, the solver to match the user needs.

o The need to experiment several techniques and possibly adapt the constraint
solver favours the approach of glass-bor constraint solvers rather than back-bor
solvers.

o There is room to improve not only the capabilities of constraint solvers, but also
to take advantage of the flexibility of the CLP approach to tackle applications
requiring mixed techniques.

. Many applications are naturally over constrained and there is much research to
be done in defeasible constraint solving.

o Constraint solving over reals (intervats) shows good potential for engineering
applications.

References

[Abr00]

[Abr01]

[Abro2]

[AD03a]

lADo3bl

lADN04l

Salvador Abreu. A Logic-based Information System. In Enrico Pontelli
and Vitor Santos-Costa, editors, *d Internati,onal Workshop on practi,cal

Aspects of Declaratiue Languages (PADL'2000), volume 1753 of Lecture
Notes i,n Computer Science, pages 141-153, Boston, MA, USA, January
2000. Springer-Verlag.

Salvador Abreu. Isco: A practical language for heterogeneous information
system construction. In Proceedi,ngs of INAP'1L, Tokyo, Japan, October
2001. Prolog Association of Japan.

Salvador Abreu. Modeling Role-Based Access Control in ISCO. In
LAagia Maria Ribeiro and JosAI Marques dos santos, editors, The Bth
Internati,onal Conference of European [Jni,uers,ity Informati,on Systems.
FEUP EdiAgAtres, June 2002. ISBN 972-TS2-0S|-0.

salvador Abreu and Daniel Diaz. objective: In minimum context. In
Catuscia Palamidessi, editor, ICLP, volume 2g16 of Lecture Notes i,n

Computer Sci,ence, pages 128-147. Springer, 2003.

Salvador Abreu and Daniel Diaz. objective: in Minimum Context.
In Catuscia Palamidessi, editor, Log'ic Programming, lgth Internati,onal
Conference, ICLP 2003, Mumbai,, Indi,a, December g-15, 2005, proceed,ings,

volume 2916 of Lecture Notes 'in computer sci,ence, pages r28-r47.
Springer-Verlag, 2003. ISBN 3-540-20642-6.

Salvador Abreu, Daniel Diaz, and Vitor Nogueira. organizational in-
formation systems design and implementation with contextual constraint
logic programming. In IT Innouati,on ,in a Changi,ng World, - The 10h
Intemati,onal Conference of European uni,aersi,ty Information Systems,
Ljubljana, Slovenia, June 2004.

A. Aggoun and et. al. Eciipse user manual release 5.10, November 2007.

L4t

[Aea07]

142

lAKNs6l

IAr83]

lAMsel

lANo5I

lANo6l

lAReel

[Ari86]

lAtel

[Aug01]

lBBJe8l

IBCC+e7l

lBCLMe8l

REFERENCES

H Ait-Kaci and R Nasr. Login: A logic programming language with built-in

inheritance. J. Log. Program., 3(3):185-215, 1986.

J .F. Ailen. Maintaining knowledge about temporal intervals' cacrn)

26(11):832-843, nov 1983.

Martin Abadi and Zohar Manna. Temporal logic programming. J. Symb.

C omput., 8(3) :277-295, 1989.

Salvador Abreu and Vitor Nogueira. Using a Logic Programming Language

with Persistence and Contexts. In Masanobu Umeda and Armin Wolf,

editors, Proceed,i,ngs of the 16th Internati,onal Conference on Appli,cati,ons

of Declarati,ue Programmi,ng and, Knowledge Management (INAP 2005),

Fukuoka, Japan, October 2005. Waseda University.

Salvador Abreu and Vitor Nogueira. Towards structured contexts and

modules. In Etalle and Truszczynski [ET06], pages 436-438'

Tamas Abraham and John F. Roddick. Survey of spatio-temporal

databases. G eoi,nformat'ica, 3 (1) :61-99, 1999.

Gad Ariav. A temporally oriented data model. ACM Tfans. Database

Syst., 1 1 () :a99-527, 7986.

Atempo. Time navigator. ht'tp:l lwww.atempo.comf '

Juan Carlos Augusto. The }ogical approach to temporal reasoning' Arti'f'

Intell. Reu., 16(4):301-333, 2001.

Michael H. Bohlen, R. Busatto, and Christian S. Jensen. Point-versus

interval-based temporai data models. In ICDE '98: Proceed'ings of the

Fourteenth Internatr,onal Conference on Data Engi,neering, pages 192-200,

Washington, DC, USA, 1998. IEEE Computer Society'

F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. L6pez-Garcia, and

G. Puebla. The ciao prolog system. reference manual. Technical Report

CLIP3lg7.1, School of Computer Science, Technical University of Madrid

(uPM), August 1997. Available from http: I I www.clip. dia.fi .upm.es/.

Michele Bugliesi, Anna Ciampolini, Evelina Lamma, and Paola Mello'

optimizing modular logic languages. ACM Comput. suru., 30(3es):10,

1998.

K. A. Bowen and R. A. Kowalski. Amalgamating language and metalan-

guage in logic programming. In K. L. Clark and s.-A. Td,rnlund, editors,

Logi,c Programm'ing, pages t53-L72. Academic Press, London, 1982'

lBK82l

REFERENCES L43

[BK94] Anthony J. Bonner and Michael Kifer. An overview of transaction logic.
In Theoreti,cal Computer Sc'ience (TCS), pages L33:205-265, 1994.

[BLM93] Michele Bugliesi, Evelina Lamma, and Paola Mello. Partial deduction for
structured logic programming. J. Log. Program.,16(1):89-122, L993.

[BLM94] Michele Bugliesi, Evelina Lamma, and Paola Mello. Modularity in logic
programming. The Journal of Logi,c Programm,ing, Lg k 20:443-502, May
t994.

[BMPT94] Antonio Brogi, Paolo Mancareila, Dino Pedreschi, and Franco T\rrini. Mod-
ular logic programming. ACM Tfans. Program. Lang. Syst., 16(a):1361-
1398, 1994.

[BMRT01] P. Baldan, P. Mancarella, A. Raffaetd,, and F. T\rrini. MuTACLP: A
language for temporal reasoning with multiple theories. Technical Report
TR-01-22, Dipartimento di Informatica, Universite di Pisa, 23 2001.

[BMRTO2] Paolo Baldan, Paolo Mancarella, Alessandra RaffaetdL, and Ranco Turini.
Mutaclp: A language for temporal reasoning with multiple theories. In
Antonis C. Kakas and Fariba Sadri, editors, Computati,onal Log,ic: Log,ic

Programmi,ng and Beyond, volume 2408 of Lecture Notes i,n Computer
Sc'ience, pages 1-40. Sprin ger, 2002.

IBro56]

IBrz98]

lBZ82l

lcc84

lcce2l

lccGre5l

F. P. Brooks. The Analgtic Desi.gn of Automati,c Data Process,ing Systems.

PhD thesis, Harvard University, May 1956.

Christoph Brzoska. Programming in metric temporal logic. Theor. Comput.
S ci,., 202(l-2) :55-125, 1 998.

Jacov Ben-Zvi. The time relati,onal model. PhD thesis, 1982.

James Clifford and Albert Croker. The historical relational data model
(hrdm) and algebra based on lifespans. In Proceedi,ngs of the Thi,rd In-
ternati,onal Conference on Data Engi,neeri,ng, pages 528-537, Washington,
DC, USA, 1987. IEEE Computer Society.

Patrick Cousot and Radhia Cousot. Abstract interpretation and applica-
tion to logic programs. J. Log. Program., L3(2k3):103-179, 1992.

James Clifford, Albert Croker, Fabio Grandi, and Alexander Tuzhilin.
On temporal grouping. In Proceedi,ngs of the International Workshop on
Temporal Databases, pages 194-273, London, UK, 1995. Springer-Verlag.

144

lccre4l

IChe80]

IChoea]

lcLMe6l

lcMool

ICor05]

[cPo3]

lcPo4l

lcP06l

lcre8l

REFERENCES

James Clifford, Albert Croker, and Alexander Tuzhilin. On completeness

of historical relational query languages. ACM Tfans. Database Sgst.,

19(1):64-116,1994.

Brian F. Chellas. Modal Logi,c: An Introducti,on. Cambridge University

Press, Cambridge, 1980.

J. Chomicki. Temporal query languages: a survey. In D. M. Gabbay and

H. J. Ohlbach, editors, Temporal Logi,c: ICTL'9L,vohtme827, pages 506-

534. Springer-Verlag,, 1994.

Anna Ciampolini, Eveiina Lamma, and Paola Mello. An abstract

interpretation framework for optimizing dynamic modular logic languages.

Inf. Process. Lett., 58():163-170, 1996'

Luca Chittaro and Angelo Montanari. Temporai representation and

reasoning in artificial intelligence: Issues and approaches. Annals of

M athemat'i c s and Arti'fi ci' al I ntelli, g ence, 28 (l- 4) : 47-1 06, 2000.

Oracle Corportation. Oracle database 10g workspace manager overview.

Oracle White Paper, May 2005.

Carlo Combi and Giuseppe Pozzi. Temporal conceptual modelling of

workflows. In Il-Yeol Song, Stephen W. Liddle, Tok Wang Ling, and Peter

scheuermann, editors, ER, volume 2813 of Lecture Notes i,n Com,puter

Sci,ence, pages 59-76. Springer, 2003.

Carlo Combi and Giuseppe Pozzi. Architectures for a temporal workflow

management system. In SAC ',|f : Proceedi,ngs of the 2004 ACM symposi,um

on Appli,ed, con'tputi,ng, pages 659-666, New York, NY, USA, 2004' ACM

Press.

Carlo Combi and GiuseppePozzl Task scheduling for a temporal workflow

management system. Thi,rteenth Internati,onal Symposi,um on Temporal

Representati,on and Reasoni,ng (T I ME' 06), 0:6 1-68, 2006.

Jan Chomicki and David Toman. Temporal logic in information systems.

In Jan Chomicki and Gunter Saake, editors, Logi,cs for Databases and

Informati,on sgstems (the book grow out of the Dagstuhl sem'inar 9529:

Rote of Logi,cs i,n Informati,on Systems, 1995), pages 31-70. Kluwer, 1998.

c. J. Date. An i,ntroducti,on to database sgstems (Tth ed.). Addison-wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1999.
[Datee]

REFERENCES

lDBLOTI

lDC01l

lDD02I

lDD05l

IDLM+e2l

lDMGe4l

lDMPell

lDNOe2l

IEMK+o4l

lEr06l

L45

llth Intemati,onal Symposi,um on Temporal Representati,on and Reasoni,ng

(TIME 2007), 28-30 June 2007, Al'icante, Spai,n.IEEE Computer Society,
2007.

Daniel Diaz and Philippe Codognet. Design and implementation of the
gnu prolog system. Joumal of Functional and Logi,c Programming,200l(6),
October 2001.

Chris Date and Hugh Darwen. Temporal Data and the Relati,onal Model.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

Hugh Darwen and C. J. Date. An overview and anaiysis of proposals

based on the tsql2 approach. http:l lwww.dcs.warwick.ac.uk/-hugh/
TTM/OnTSQL2.pdf, March 2005.

Enrico Denti, Evelina Lamma, Paola Mello, Antonio Natali, and Andrea
Omicini. Implementing contexts in Logic Programming. In Evelina Lamma
and Paola Mello, editors, ?rd Internati,onal Workshop on Ertensions of
Logi,c Programmi,ng (ELP'92), pages 145-170, Bologna, Italy, 26-28 1992.

Tecnoprint Bologna.

M A Reynolds D M Gabbay, I M Hodkinson. Temporal Log'ic: Mathemati,cal

foundat'ions and computat'ional aspects, volume 1. Clarendon Press, Oxford,
1994.

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks.
Art.f. Intell., a9(1-3):61-95, 1991.

Enrico Denti, Antonio Natali, and Andrea Omicini. Contexts as first-
class objects: An implementation based on the SICStus Prolog system. In
Stefania Costantini, editor, 7th ltali,an Conference on Logi,c Programmi,ng
(GULP'??), pages 307-320, Tremezzo, Como, Italy, 77-Lg 1992. Citte
Studi, Milano, Italy.

Andrew Eisenberg, Jim Melton, Krishna Kulkarni, Jan-Eike Michels, and
Fred Zemke. Sql:2003 has been published. SICMOD Rec.,33(l):119-L26,,
2004.

Sandro Etalle and Miroslaw Tfuszczynski, editors. Logi,c Programmi,ng,

22nd Internati,onal Conference, ICLP 2006, Seattle, WA, USA, August 17-

20, 2006, Proceedings, volume 4079 of Lecture Notes'in Computer Sci,ence.

Springer, 2006.

F. Henderson and T. Conway and Z. Somogyi and D. Jeffery and P.

Schachte and S. Taylor and C. Speirs and T. Dowd and R. Becket and
lF. 06l

t46

lFGV05l

lFlrie3l

IFrii94a]

IFrteab]

lFriie6l

lfsool

lfso3l

[Gad88]

[GalS7]

[Gal08]

[Ger01]

REFERENCES

M. Brown. The Mercurg Language Reference Manual. The University of

Melbourne, 0.13.1 edition, 2006.

Michael Fisher, Dov Gabbay, and Lluis Vila. Handbook of Temporal

Reasoning i,n Arti,fi,ci,al Intelli.gence (Foundati,ons of Arti,ficial Intelli,gence

(Elseui,er)). Elsevier Science Inc., New York, NY, USA, 2005.

Thom W. Friihwirth. Temporai logic and annotated constraint logic

programming. In Michael Fisher and Richard Owens, editors, Erecutable

Modal and Temporal Logi,cs, volume 897 of Lecture Notes i,n Computer

Sci,ence, pages 58-68. Springer, 1993.

T. Friihwirth. Temporai reasoning with constraint handling rules. Technical

Report ECRC-94-5, European Computer-Industry Research Centre GmbH,

ECRC Munich, Germany, 1994.

Thom W. Frtihwirth. Annotated constraint logic programming applied to

temporal reasoning. In Manuel V. Hermenegildo and Jaan Penjam, editors,

PLILP, volume 844 of Lecture Notes i,n Computer Sci'ence, pages 230-243.

Springer, 1994.

Thom W. Friihwirth. Temporal annotated constraint logic programming.

J. Sgmb. Comput., 22(5 I 6):555-583, 1996.

International Organization for Standardization. ISO IEC 13211-2:2000:

Information technology - Programm'ing languages - Prolog - Part 2: Mod-

ules. kfternational Organization for Standardization, Geneva, Switzerland,

2000.

International Organization for Standardization. ISO/IEC 9075-*:2003.

Inforrnati.on technologg - Database languages - SQL. International Or-

ganization for Standardization, Geneva, Switzerland, 2003.

Shashi K. Gadia. A homogeneous relational model and query languages

for temporal databases. ACM Trans. Database Syst.,13():418-448, 1988.

Antony Galton. The logic of occurrence. pages 169-196, 1987.

Antony Galton. Temporal logic. In Edward N. Zaita, editor, The Stanford

Encyclopedi,a of Phi,tosophg. Spring 2008.

Manolis Gergatsoulis. Temporal and modal logic programming languages.

In A. Kent and J. G. Witliams, editors, Encgclopedi,a of Mi,crocomputers,

volume 2|,Supplement 6, pages 393-408. Marcel Dekker, Inc, New York,

2001.

REFERENCES L47

[GJ99] Heidi Gregersen and Christian S. Jensen. Temporai entity-relationship
models-a survey. IEEE Transacti,ons on Knowledge and Data Engi,neering,

fiQ):a6a-a97, 1999.

[GMR88] Laura Giordano, Alberto Martelli, and Gianfranco Rossi. Local definitions
with static scope rules in logic programming. In FGCS, pages 389-396,

1988.

[GRP96] M. Gergatsoulis, P. Rondogiannis, and T. Panayiotopoulos. Disjunctive
chronolog, 1996.

[GWW75] J.F. FYies G. Wiederhold and S. Weyl. Structured organization of clinical
data bases.In AFIPS Nati,onal Computer Conference, pages 479-485,1975.

[GY88] Shashi K. Gadia and Chuen-Sing Yeung. A generalized model for a

relational temporal database. In SIGMOD '88: Proceedi,ngs of the 1988

ACM SIGMOD 'internat'ional conference on Management of data, pages

251-259, New York, NY, USA, 1988. ACM Press.

[HF06] R6my Haemmerl6 and Frangois Fages. Modules for prolog revisited. In
Etalle and tuszczynski [ET06], pages 41-55.

[Hir97] Robin Hirsch. Expressive power and complexity in algebraic logic. Journal
of Logi,c and C omputati,on, 7(3) :309-3 51, 7997 .

[HM87] S. Hanks and D. McDermott. Default reasoning, nonmonotonic logics, and
the frame problem. pages 390-395, 1987.

[Hry93] Tomas Hrycej. A temporal extension of prolog. J. Log. Program., L5(7-

2):1 13-145, 1993.

[HS91] Joseph Y. Halpern and Yoav Shoham. A propositional modal logic of time
intervals. J. ACM, 38():935-962,, L991.

[IABC+95] Gad Ariav Ilsoo Ahn, Don Batory, James Clifford, Curtis E. Dyreson,
Ramez Elmasri, Fabio Grandi, Christian S. Jensen, Wolfgang Kd,fer, Nick
Kline, Krishna Kulkarni, T. Y. Cliff Leung, Nikos Lorentzos, John F.
Roddick, Arie Segev, Michael D. Soo, and Suryanarayana M. Sripada. The

TSQL? Temporal Query Language. Kluwer Academic Publishers, 1995.

lrBMl IBM. Data propagator. http:l lwww-306.ibm.com/softwarefdataf
integration f rephcalionf .

International Organization for Standardization. ISO/IEC 9075:1992:

Ti,tle: Informati,on technology - Database languages - SQL. 7992.
Available in English only.

IInt92]

148

IJen00]

lJKo4l

lJL87l

lrMe4l

uMRell

lJMSTel

[Johe1]

use6l

lJSSesl

IKim78]

lKJJ03l

[Kou95]

REFERENCES

Christian S. Jensen. Temporal database management. Dr. Techn. Thesis,

2000.

Peter Jonsson and Andrei Krokhin. Complexity classification in qualitative

temporal constraint reasoning. Art f. Intell.,160(1):35-51, 2004.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In POPL '87:

Proceedi,ngs of the 14th ACM SIGACT-SIGPLAN symposi,um on Pri,nci,ples

of programmi,ng languageq pages 111-119. ACM Press, 1987.

Joxan Jaffar and Michael J. Maher. Constraint logic programming: A

survev. Journal of Logi,c Programmi'ng, L9f20:503-581, 1994'

C. S, Jensen, L. Mark, and N. Roussopoulos. Incremental implementation

model for relational databases with transaction time. IEEE Transacti,ons

on Knowledge and Data Eng'ineering,3@):a6Fa73, 1991.

Susan Jones, Peter Mason, and Ronald K. Stamper. Legol2.0: A relational

specification language for complex rules. Inf. Syst., a@):293-305, 1979.

Johan Van Benthem. The Logi,c of Time: A Model-Theoret'ic Inaesti,gati,on

i,nto the Varieti,es of Temporal Ontology and Temporal Di,scourse, volume

156 of Synthese L'ibrary. Kluwer Academic Publishers, second edition, 1991.

Christian S. Jensen and Richard Thomas Snodgrass. Semantics of time-

varying information. Inf . Syst., 2 1 () :3 1 1-352, L996.

Christian S. Jensen, Richard T. Snodgrass, and Michael D. Soo. The tsql2

data model. In The TSQL? Temporal Query Language, pages 153-238.

1995.

K. A. Kimball. The data system. Master's thesis, University of

Pennsylvania, 1978.

Andrei A. Krokhin, Peter Jeavons, and Peter Jonsson. Reasoning about

temporal relations: The tractable subalgebras of allen's interval algebra.

J. ACM, 50(5):591-640, 2003.

M. Koubarakis. Databases and temporal constraints: Semantics and com-

plexity. In S. Clifford and A. T\rzhilin, editors, Recent Aduances i,n Temporal

Databases, pages 93-L12,Ztrich, Switzerland, sep 1995. Proceedings of the

International Workshop on Temporal Databases, Springer Verlag.

R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New

G enerat'ion C omputi,ng, 4(l):67-95, 1986.
lKS86l

REFERENCES t49

lKSeTl Robert A. Kowalski and Fariba Sadri. Reconciling the event calculus with
the situation calculus. J. Log. Program.,31(1-3):39-58, 1997.

[KSW90] F. Kabanza, J-M Stevenne, and P. Wolper. Handling infinite temporal
data. In 9th Annual ACM SIGACT-SIGMOD-SIGART Symposi,um on
Pri,nci,ples of Database Systems, Nashville, TN, apr 1990.

[Lab03] The Intelligent Systems Laboratory. Qui,ntus Prolog User's Manual.

Swedish Institute of Computer Science, PO Box 1263, SE-164 29 Kista,
Sweden, release 3.5 edition, December 2003.

[LEM88] Jr. Leslie Edwin Mckenzie. An algebrai,c language for query and upd,ate of
temporal databases. PhD thesis, 1988. Director-Richard Snodgrass.

[LEMS91] Jr. L. Edwin McKenzie and Richard Thomas Snodgrass. Evaluation of
relational algebras incorporating the time dimension in databases. ACM
Comput. Suru., 23():501-543, 1991.

[LFA07] Nuno Lopes, Cl6udio Fernandes, and Salvador Abreu. Contextual Logic
Programming for Ontology Representation and Querying. In Axel Polleres,

David Pearce, Stijn Heymans, and Edna Ruckhaus, editors, Proceedi,ngs of
the ICLP'}7 Workshop on Appli.cati.ons of Logi,c Programmi,ng to the Web,

Semanti,c Web and Semant'ic Web Serui.ces (ALPSWS 2007), volume 287

of CEUR Workshop Proceedi,ngs I,SSN 1613-0073, October 2007.

[LJ88] N. A. Lorentzos and R. G. Johnson. Extending relational algebra to
manipulate temporal data. Inf. Syst., 13(3):289-296, 1988.

[LM94] Evelina Lamma and Paola Mello. Modularity in logic programming. In
Pascal Van Hentenryck, editor, Log'ic Programmi,ng - Proceedi,ngs of the

Eleaenth Internati,onal Conference on Logi,c Programmi,ng, pages 15-17,
Massachusetts Institute of Technology, 1994. The MIT Press.

[LMN92] E. Lamma, P. Mello, and A. Natali. An Extended Warren Abstract
Machine for the Execution of Structured Logic Programs. Journal of Logi,c

Pro grammi,n g, 7 4(3- 4) :L87 -222, 1992.

[LO96] Chuchang Liu and Mehmet Ali Orgun. Clocked Temporal Logic Pro-
gramming. In Proceedi,ngs of The 19th Australasi,an Computer Sc'ience

C onf erence. Melbourne, Austraiia, January 3 l-February 2 lgg6.

[Lor88] N. A. Lorentzos. A Formal Ertens'ion of the Relati,onal Model for the

Representati,on of Generi,c Interuals. PhD thesis, Birkbeck College, 1988.

Lumigent. Log explorer for sql server. http:llwww.lumigent.com/
products/le_ sql. html.

ILum]

150

[McCe2]

[Mei91]

[Meie6]

lMH6el

lMils6l

IMilsea]

lMilsebl

lMile3l

lMM206l

lMNR8el

lMNRT00l

REFERENCES

Francis G. McCabe. Log'i,c and objects. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1992.

Itav Meiri. Combining qualitative and quantitative constraints in temporal

reasoning. In Thomas Dean and Kathleen McKeown, editots, Proceed'ings

of the Ni,nth Nati,onal Conference on Artifici'al Intelli,gencq pages 26A-267,

Menlo Park, California, 1991. AAAI Press.

Itay Meiri. Combining qualitative and quantitative constraints in temporal

reasoning. Arti,f . Intell., 87(1-2) :343-385, 1996.

John McCarthy and Patrick J. Hayes. Some philosophical problems from

the standpoint of artificial intelligence. In B. Meltzer and D. Michie,

editors, Machi,ne Intelli,gence l, pages 463-502. Edinburgh University

Press, 1969. reprinted in McC90.

Dale Miller. A theory of modules for logic programming. In Sgmposi,um

on Log'ic Programmi,ng, pages 106-114, 1986.

Dale Milier. A Logical Analysis of Modules in Logic Programming. Journal

of Logi,c Programmi,ng, 6(2):79-108, 1989.

Dale Miller. Lexical scoping as universal quantification. In Si,rth Inter-

nati,onal Logi,c Programmi,ng Conference, pages 268-283, Lisbon, Portugal,

June 1989. MIT Press.

Dale Miller. A proposal for modules in iambda-prolog. In Roy Dyckhoff,

editor, ELP, volume 798 of Lecture Notes i,n Computer Sci'ence, pages 206-

221. Springer, 1993.

Elisabetta De Maria, Angelo Montanari, and Marco Zarflon| An

automaton-based approach to the verification of timed workflow schemas.

In TIME '06: Proceedi,ngs of the Thi,rteenth Internati,onal Symposi'um

on Temporal Representati,on and Reasoni,ng (TIME'06), pages 87-94,

Washington, DC, USA, 2006. IEEE Computer Society.

Paola Mei1o, Antonio Natali, and Cristina Ruggieri. Logic programming

in a software engineering perspective. In NACLP, pages 441-458,1989.

Paolo Mancarella, Gianluca Nerbini, Alessandra Raffaetd, and FYanco

Turini. Mutaclp: A language for declarative gis analysis. In John W.

Lloyd, Ver6nica Dahl, Ulrich F\rrbach, Manfred Kerber, Kung-Kiu Lau,

Catuscia Palamidessi, Lufs Moniz Pereira, Yehoshua Sagiv, and Peter J.

Stuckey, editors, Computati,onal Logi,c, volume 1861 of Lecture Notes 'in

Computer Sci,ence, pages 1002-1016. Springer, 2000.

REFERENCES 151

IMou00] Paulo Moura. Logtalk 2.6 Documentation. Technical Report DMI 2000/1,
University of Beira Interior, Portugal, July 2000.

Paulo Moura. Logtalk - Desi,gn of an Object-Ori,ented Logi,c Programmi,ng
Language. PhD thesis, Department of Computer Science, University of
Beira Interior, Portugal, September 2003.

IMou03]

[MP89] Luis Monteiro and Ant6nio Porto. Contextual logic programming. In Mau-
rizio Levi, Giorgio; Martelii, editor, Proceedi,ngs of the 6th Intemati,onal
Conference on Log,ic Programmi,ng (ICLP '89), pages 284-302, Lisbon,
Portugal, June 1989. MIT Press.

[MP90] Luis Monteiro and Ant6nio Porto. A transformational view of inheritance
in logic programming. In ICLP, pages 48L-494,1990.

[MP93] Luis Monteiro and Ant6nio Porto. A Language for Contextual Logic
Programming. In K.R. Apt, J.W. de Bakker, and J.J.M.M. Rutten, editors,
Logi,c Programm'ing Languages: Constraints, Functions and Objects, pages

7I5-L47. MIT Press, 1993.

[MRT97] Paolo Mancarella, Alessandra Raffaetd,, and Franco Turini. Time in a
multitheory logical framework . In TIME, pages 62-70, lgg7.

[MRT99] Paolo Mancarella, Alessandra Raffaetd, and F]anco Turini. Knowledge
representation with multiple logical theories and time. J. Erp. Theor.
Artxf. Intell., LIQ):a7-76, 1999.

[NA89] S. B. Navathe and R. Ahmed. A temporal relational model and a query
language. Inf. Sci,., 49(1-3):1a7-175, 1989.

[NA06a] Vitor Nogueira and Salvador Abreu. Temporal contextual logic program-
ming. In Francisco J. L6pez Fraguas, editor, Proceed,,ings of the l|th
Workshop on Functi,onal and (Constrai,nt) Logi,c Programmi.ng (WFLP'06),
Madrid, Spain, November 2006. Electronic Notes in Theoretical Computer
Science.

lNAo6bl Vitor Nogueira and Salvador Abreu. Towards temporal contextual logic
programming. In Etalle and Tluszczynski [ET06l, pages 4Sg-44L.

Vitor Nogueira and Salvador Abreu. Integrating temporal annotations
in a modular logic language. In Dietmar Seipel, Michaei Hanus, Armin
Wolf, and Joachim Baumeister, editors, 17th Internati,onal Conference
on Appli,cations of Declaratiue Programmi,ng and Knowledge Management
(INAP 2007), volume Technical Report 434,Wirzburg, Germany, October
2007. Bayerische Julius-Maximilians-Universitd,t Wiirzburg.

[NAO7a]

752

lNAoTbl

[NA07c]

[NAo7d]

lNADo3l

lNADo4l

lNBe4l

lNM88l

lNol

REFERENCES

Vitor Nogueira and Salvador Abreu. Modularity and temporal reasoning:

a logic programming approach. In Ti'me lDBL}7l.

Vitor Nogueira and Salvador Abreu. Temporal Annotations for a Contex-

tual Logic Programming Language. In Jos6 Neves, Manuel Santos, and

Jos6 Machado, editors, Progress i,n Arti,fi,ci,al Intell'igence, 13th Portuguese

Conference on Artifici,al lrttell'ige nce, EPIA 2007, Universidade do Minho,

2007.

Vitor Nogueira and Salvador Abreu. Temporal contextual logic program-

ming. Electr. Notes Theor. Comput. Sci'., 177:2t9-233, 2007.

Vitor Nogueira, Salvador Abreu, and Gabriel David. Using contextual logic

programming for temporal reasoning. In Jaime G6mez Ernesto Pimentel,

Nieves J. Brisaboa, editor, Proceedi,ngs of the VIII Jornadas de Ingeni,erta

d,el Software E Bases de Datos, pages 479-489, Alicante, Spain, November

2003.

Vitor Beires Nogueira, Salvador Abreu, and Gabriel David. Towards

temporal reasoning in constraint contextual iogic programming. In

Proceed,i,ngs of the Sd Internati.onal Workshop on Multi'paradi,gm Constrai,nt

Programmi,ng Lan g uag es Multi,C P L' 0 f as s oci,ated to I C L P' 0 4, S aint-Malo,

France, September 2004.

Bernhard Nebel and Hans-Jiirgen Biirckert. Reasoning about temporal

relations: a maximal tractable subclass of allen's intervai algebra. In AAAI

'9f : Proceed,i,ngs of the twelfth nati,onal conference on Artificial i,ntelli'gence

(uot. 1), pages 356-361, Menlo Park, cA, usA, 1994. American Association

for Artificial Intelligence.

Gopalan Nadathur and Dale Miller. An Overview of)Prolog. In
Fi,fth Intemati,onal Logi,c Programmi,ng conference, pages 810-827, Seattle,

August 1988. MIT Press.

Antonio Natali and Andrea Omicini. Objects with state in Contextual

Logic Programming. In Maurice Bruynooghe and Jaan Penjam, editors,

Programmi,ng Language Implementation and Logi,c Programm'ing, volume

7L4 of LNCS, pages 220-234. Springer-Verlag. 5th International Sympo-

sium (PLILP'93), Tallinn, Estonia, 25-27.

Antonio Natali and Andrea Omicini. Objects with state in CSM. In Znd

compulog Network Area Meeti,ng on Programmi,ng Languages ioi,nt wi,th

Workshop on Logi'c Languages, pages 1-2, Pisa, Italy, 6-7 1993.

[Noe3]

REFERENCES

[o'K85j

[Orge1]

Iorge6]

[Pan95]

[Pao]

[Pinea]

153

[Por03]

R. O'Keefe. Towards an algebra for constructing logic programs. In In J.

Cohen and J. Conery, editors, Proceedi,ngs of IEEE Symposi,um on Logi,c

Programmi,ng, pages 152-160. IEEE Computer Society Press, 1985.

Mehmet AIi Orgun. Intensi,onal logi,c prograrnrning. PhD thesis, Victoria,
B.C., Canada, Canada, 1991.

Mehmet A. Orgun. On temporal deductive databases. Computati,onal
Intelli,g ence, 12:235-259, 1996.

M. Panayiotopoulos, T. and Gergatsoulis. A Prolog like temporal reasoning
system. In M. H. Hamza, editor, Proc. of 1?th IASTED Internati,onal Con-

ference on APPLIED INFORMATICS, pages 123-126,,ICLS (Innsbruck),
Austria, 1995.

Paolo Terenziani. Reasoning about Time.

Javier Pinto. Temporal Reasoni,ng i,n the Si,tuation Calculus. PhD thesis,
Department of Computer Science, University of Toronto, Toronto, Canada,
January 1994.

Ant6nio Porto. An integrated information system powered by prolog. In
Ver6nica Dahl and Philip Wadler, editors, PADL, volume 2562 of Lecture
Notes in Computer Sc,ience, pages 92-109. Springer, 2003.

A. N. Prior. T'ime and Modality. The Clarendon Press, Oxford, 1957.

A. N. Prior. Past, present and future. The Ciarendon Press, Oxford, 1967.

A. N. Prior. Papers on Time and Tense. The Clarendon Press, Oxford,
1968.

Alessandra Raffaet5. Spati,o-temporal knowlegde bases 'in constrai,nt logi,c
progranxming framework wi,th multi,ple theori.es. PhD thesis, Universit6
Degli Studi di Pisa, Dipartamento di Informatica, Pisa, Italy, March 2000.

H. Reichgeit. A comparison of first order and modal logics of time.
In P. Jackson, H. Reichgelt, and F. van Harmelen, editors,, Logi,c-Based
Knowledge Representat'ion, pages 143-176. MIT Press, Cambridge, MA,
1989.

Alessandra Raffaetd, and Thom Fliihwirth. Labelled deducti,on, chapter
Semantics for temporal annotated constraint logic programming, pages

2L5-243. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[Pri57]

[Pri67]

IPri68]

IRaf00]

[Rei8e]

IRF00a]

154 REFERENCES

[RF00b] Alessanclra Raffaetd and Thom Friihwirth. Two semantics for temporal

annotated constraint logic programming. In M. Gergatsoulis and P. Ron-

dogiannis, editors, Intensi,onal Programmi,ng II, Based on the Papers at

ISLIP'99, pages 78-92. World Scientific Singapore, 2000.

[RGP97] Panos Rondogiannis, Manolis Gergatsoulis, and Themis Panayiotopoulos.

cactus: A branching-time iogic programming ianguage. In ECSQARU-

FAPR, pages 5L1-524, L997.

[Ribg3] Cristina Ribeiro. Representati,on and Inference of Temporal Knowledge.

PhD thesis, Faculdade de Ci6ncias e Tecnologia, Universidade Nova de

Lisboa, 1993.

[RN03] Stuart J. Russell and Peter Norvig. Arti,fici,al Intelli,gence: A Modern

Approach. Pearson Education, 2003.

[RV05] H. Reichgelt and L. Vila. Handbook of Temporal Reasoning i,n Arti,fici,al

Intelli,gence (Founilati.ons of Arti,fici,al Intelh,gence (Elseui'er)), chapter

Temporal Qualification in Artificial Intelligence. In [FGV05], 2005.

[Sad87] Rubik Sadeghi. A d,atabase query language for operat'ions on hi'stori,cal

data. PhD thesis, 1987.

[Sar90a] N. L. Sarda. Algebra and query ianguage for a historical data model.

Comput. J., 33(1):11-18, 1990.

[Sar9Ob] N. L. Sarda. Extensions to sql for historical databases. IEEE T\ansact'ions

on Knowledge and Data Engi,neering,2(2):220-230, 1990'

[SBJS9T] Richard T. Snodgrass, Michael H. Bohlen, Christian S. Jensen, and

Andreas Steiner. Transitioning temporal support in tsql2 to sq13. In

Temporal Databases, Dagstuhl, pages 150-194, 1997'

[Schg3] Eddie Schwalb. Temporal Reasoni,ng Wi,th Constrai'nts, PhD thesis,

University of Caiifornia Irvine, June 1998.

[Sho88] Y. Shoham. Chronological ignorance: experiments in nonmonotonic

temporal reasoning. Arti'f. Intell., 36(3):279-331, 1988.

[SKg1] Michael Stonebraker and Greg Kemnitz. The postgres next generation

database management system. commun. ACM, 34(10):78-92, 7991.

[SKDg4l Eddie Schwalb, Kalev Kask, and Rina Dechter. Temporal reasoning with

constraints on fluents and events. In Proceedi,ngs of the Twelfth Nati,onal

conference on Ar-ti,fi,ci,al Intelli,gence (AAAI-90, volume 2, pages 7067-

1072, Seattle, Washington, USA, 1994. AAAI Press/MIT Press'

REFERENCES

lsNo4l

ISno]

[Sno87]

ISnoO7]

lss87l

lssw+o7l

[Ste05]

[Subea]

lsve6l

lsvesj

lrA86l

155

)

4

Jrirg Sander and Mario A. Nascimento, editors. Spati,o-Temporal Database
M anag ement, 2nd Internati,onal Workshop S T D B M' 0/r, Toronto, C anada,
August 30, 200/+,2004.

Richard Snodgrass. Tsql2 and sql3 interactions. http:l lwww.cs.arizona.
edu/-rts/sql3.html.

Richard r. Snodgrass. The temporal query language tquel. ACM Trans.
Database Syst., 12(2):247-298, Lg87 .

Richard T. Snodgrass. Towards a science of temporal databases. In TIME
[DBL07], pages 6-7.

Arie Segev and Arie Shoshani. Logical modeling of temporal data. In
SIGM)D '87: Proceed'ings of the 1987 ACM SIGM)D ,internati,onal

conference on Management of data, pages 4b4-400, New york, Ny, USA,
1987. ACM.

K. F. Sagonas, T. Swift, D. S. Warren, J. Fbeire, P. Rao, B. Cui, E. Johnson,
L. de Castro, R. F. Marques, D. Saha, S. Dawnson, and M. Kifer. The XSB
System Versi,on 3.1 Volume 1: Progranlnl,er's Manual, August 2007.

Andreas Steiner. Timedb. http: I lwww.TimeConsult.com/, 200b.

v. s. subrahmanian. Amalgamating knowledge bases. ACM Trans.
D atabase Sy st., 19 (2) :297-33 1, 1994.

E. Schwalb and L. vila. Logic programming with temporal constraints. In
TIME '96: Proceedi,ngs of the ?rd workshop on Temporal Representation
and Reasoni,ng (TIME'96), page 51, Washington, DC, USA, 1996. IEEE
Computer Society.

Eddie Schwalb and Lluis Vila. Temporal constraints: A survey. Con-
stra'ints,, 3(2 I 3) :L29-149, 1998.

Abdullah Uz Tansel and M. Erol Arkun. Hquel, a query language for
historical relational databases. In SSDBM'8f: proceed,ings of the Srd,
internati,onal workshop on Stati,st'ical and sc,ienti,fi,c database management,
pages 135-142, Berkeley, cA, us, 1986. Lawrence Berkeley Laboratory.

Alexander Tuzhilin and James Clifford. A temporal relational aigebra
as a basis for temporal relational completeness. In proceed,ings of the
si,rteenth 'internat'ional conference on very large databases, pages l}-zz,
San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

lrceol

156 REFERENCES

[TCG+93] Abdullah Uz Tansel, James Clifford, Shashi Gadia, Sushil Jajodia, Arie

Segev, and Richard Snodgrass, editors. Temporal databases: theory, desi,gn,

and, i,mplementati,on. Benj amin-cummings Publishing co., Inc., Redwood

City, CA, USA, 1993.

[The07] The Intelligent Systems Laboratory. SICStus Prolog User's Manual.

Swedish Institute of Computer Science, PO Box 1263, SE-164 29 Kista,

Sweden, release 4.0.2 edition, November 2007'

[Thogl] P. M. Thompson. A Temporal Data Model Based on Accounti'ng Pri,nci,ples'

phD thesis, Department of Computer Science, University of Calgary, Mar

1991.

[Vil82l Marc B. Vilain. A system for reasoning about time. In AAAI, pages 197-

201,7982.

[Vilg4] Lluis Vila. A survey on temporal reasoning in artificial inteliigence. AI
C ommuni, cati,ons, 7 (l) :4-28, L99 4'

[VK86] Marc Vilain and Henry Kautz. Constraint Propagation Algorithms for

Temporal Reasoning. In Proc. Fifth Nati,onal Conference on Arti,fi,ci'al

Intelli,gence, pages 377-382, Philadelphia, PA, USA, 1986'

[VKvB9g] Marc Vilain, Henry Kattz, and Peter van Beek. Constraint propagation

aigorithms for temporal reasoning: a revised report. pages 373-381, 1990.

[War83] D.H.D. Warren. An abstract prolog instruction set. Technical Note 309,

Artificial Intelligence Center, SRI International, Menlo Park CA, 1983'

[wie97] J. Wielemaker. swi-prolog reference manual, 1997.

[WikgS] Wikipedia. Time - wikipedia, the free encyclopedia, 2008. [Online;

accessed 28-August-200S].

lwzz11) Fusheng wang, carlo zaniolo, and Xin zhora.. Temporal xml? sql strikes

back! In TIME '05: Proceedi,ngs of the 12th Internat'ional Symposi,um

on Temporal Representati,on and Reasoni,ng (TIME',1S), pages 47-55,

Washington, DC, USA, 2005. IEEE Computer Society'

[YAP06] The YAP Prolog system. h\tp:l lwww.ncc.up.ptl-vsclYap. 2006.

\

rr

