
On the Scalability of Constraint Programming on
Hierarchical Multiprocessor Systems

Rui Machado
CC-HPC - Fraunhofer ITWM

Kaiserslautern, Germany
rui.machado@itwm.fhg.de

Vasco Pedro
Universidade de Évora

Évora, Portugal
vp@di.uevora.pt

Salvador Abreu
Universidade de Évora

Évora, Portugal
spa@di.uevora.pt

Abstract—Recent developments in computer architecture
progress towards systems with large core count, which expose
more parallelism to applications, creating a hierarchical setup
at the node and cluster levels. To take advantage of all this
parallelism, applications must carefully exploit the different levels
of the system which, if ignored, may yield surprising results. This
aggravates the already difficult task of parallel programming.

Declarative approaches such as those based on constraints are
attractive to parallel programming because they concentrate on
the logic of the problem. They have been successfully applied
to hard problems, which usually involve searching through
large problem spaces, a computationally intensive task but with
potential for parallelization. Tree search algorithms play an
important role in research areas such as constraint satisfaction or
optimisation, and artificial intelligence. Tree search lends itself
naturally to parallelization by exploiting different branches of
the tree but scalability may be harder to achieve due to the high
dynamic load balancing requirements.

In this paper we present a high-level declarative approach
based on constraints and show how it benefits from an efficient
dynamic load balancing based on work stealing targeted at large-
scale. We focus on the implementation of a hierarchical work
stealing scheme using a different programming model, GPI.
Experimentation brought encouraging results on up to 512 cores
on large instances of satisfaction and optimisation problems.

I. INTRODUCTION

Current computer architectures are parallel, with an increas-
ing number of processors. Parallel programming is an error-
prone task and declarative models such as those based on
constraints relieve the programmer from some of its difficult
aspects, because they abstract control away.

Declarative computational models can simplify the mod-
eling task and are thus attractive for parallel programming,
as they concentrate on the logic of the problem, reducing the
programming effort and increasing the programmer productiv-
ity. The issue of how the programmer expresses its problem
is orthogonal to the underlying implementation which should
target and exploit the available parallelism.

Among the different declarative models, those based on con-
straints programming have been successfully applied to hard
combinatorial problems, which usually entail exploring large
search spaces, a computationally intensive task, but one with
significant potential for parallelization. This situation has been
recognised as witness several recent efforts to automatically
exploit the inherent parallelism found in constraint solving

problems, be it with local search methods [4], [5], [6] or
propagation-based complete solvers [8], [7].

Many applications solve a problem which is similar to the
traversal of a large implicitly defined tree. Tree search lends
itself naturally to parallelization by independently exploring
different branches of the tree. This is an interesting problem,
from the parallelization point of view, not only because high
scalability is possible but given the challenges posed to the
load balancing scheme. The load balancing scheme must
ensure that all processing elements are active without prior
knowledge concerning the shape of the tree, with a dynamic
and irregular generation/granularity of work and communica-
tion.

In this paper, we present a system – MaCS – that provides
the declarative model of constraint programming and that
copes well with the increasing parallelism of current systems.
The system is implemented on top of GPI, a PGAS API that
focuses on one-sided and asynchronous communication.

This paper is organised as follows: in section II we shortly
present Constraint Programming (CP). In section III we in-
troduce GPI, the framework used to address the problem.
We then describe MaCS, a novel parallel complete constraint
solver in section IV and present the results of our performance
evaluation in section VI. Finally, we conclude our work in
section VIII and discuss some future work.

II. CONSTRAINT PROGRAMMING

The idea of constraint programming is to solve problems by
stating constraints (properties, conditions) involving variables,
which must be satisfied by the solution(s) of the problem. One
then lets a solver figure out adequate values for the variables.

Constraints can be viewed as pieces of partial information.
They describe properties of unknown objects and relations
among them. Objects can mean people, numbers, functions
from time to reals, programs, situations. A relationship can be
any assertion that can be true for some sequences of objects
and false for others.

Constraint Programming is a declarative approach to pro-
gramming where first a model is defined and then a solver is
used to find solutions for the problem.

The first step in solving a given problem, is to formulate it
as a Constraint Satisfaction Problem (CSP). This formulation
is the model of the problem.

Definition 1. A Constraint Satisfaction Problem (CSP) over
finite domains is defined by a triplet (X,D,C), where:

• X = {x1, x2, . . . , xn} is an indexed set of variables;
• D = {D1, D2, . . . , Dn} is and indexed set of finite sets

of values, where each Di is the domain of variable xi for
every i = 1, 2, . . . , n;

• C = {c1, c2, . . . , cm} is a set of relations between
variables, called constraints.

As per Definition 1, a CSP comprises the variables of the
problem and their respective domain. The domain of a variable
can range over integers, reals or symbols among others but in
this work we concentrate on finite domains, encoded as a finite
prefix of natural numbers.

Constraint Programming is often used for and deals well
with combinatorial optimisation problems. Examples are the
Traveling Salesman Problem (TSP) and the Knapsack Prob-
lem, two classic NP-complete problems. In such problems,
one aims at finding the best (optimal) solutions from a set
of solutions, maximising (or minimising) a given objective
function.

We can define a Constraint Optimisation Problem by ex-
tending the definition of CSP with an objective function:

Definition 2. A Constraint Optimisation Problem (COP) is
defined by a 4-tuple (X,D,C, obj), where:

• (X,D,C) is a CSP and,
• obj : Sol 7→ R where Sol is the set of all solutions of

(X,D,C)

After correctly modelling the problem at hand, a constraint
solver is used to get solutions for the CSP. A solution to a
CSP is an assignment of a value from the domain of every
variable, in such a way that every constraint is satisfied. When
a solution for a CSP is found, we say the CSP is consistent.
If a solution cannot be found, then the CSP is inconsistent. In
other words, finding a solution to a CSP corresponds to finding
an assignment of values for every variable from all possible
combinations of assignments. The whole set of combinations
is referred to as the search space.

A CSP can be solved by trying each possible value as-
signment and see if it satisfies all the constraints. However,
this possibility is a very inefficient one and for many prob-
lems simply not feasible. Complete methods always find a
(best) solution or prove that no solution exists. For that, two
main techniques are used: search and constraint propagation.
Constraint propagation is a technique to avoid this problem
and its task is to prune the search space, by trying to detect
inconsistency as soon as possible. This is done by analysing
the set of constraints of the current sub-problem and the
domains of the variables in order to infer additional constraints
and domain reductions. With search, a problem is split into
sub-problems which are solved recursively, usually using back-
tracking. Backtracking search incrementally attempts to extend
a partial assignment toward a complete solution, by repeatedly
choosing a value for another variable and keeping the previous
state of variables so that it can be restored, should failure

occur. Solving a CSP is therefore, the traversal of a tree whose
nodes correspond to the sub-problems (partial assignments)
and where the root of the tree is the initial problem with no
assignments.

Search and constraint propagation can be combined in
various forms. One particular class of constraint solvers com-
bines search and constraint propagation by interleaving them
throughout the solving process. At each node of the search
tree, propagation is applied to the corresponding CSP, detect-
ing inconsistency or reducing the domains of some variables.
If a fix-point is achieved, search is performed. This process
continues until the goal of the solving process is reached.

A. Parallel Constraint Solving

Due to the declarative nature of Constraint Programming,
taking advantage of parallelism should be possible to achieve
in the solving step. The modeling step should remain un-
changed, as well as the user’s awareness of the underlying
implementation.

Parallelizing Constraint Solving is, as in all kinds of al-
gorithms and applications, a matter of identifying parts that
can take advantage of parallel execution. In the literature,
the parallelization of constraint solving has been handled in
various ways, where the different parts of the process have
been experimented with, as subjects of parallelization.

An obvious candidate for parallelization is propagation,
where several propagators are evaluated in parallel. For prob-
lems where propagation consumes most of the computation
time, good speedups may be achieved in this way. On the other
hand, the overhead due to synchronisation and the fine grained
parallelism can limit the scalability. The implementation of
parallel constraint propagation involves keeping the available
work evenly distributed among the entities responsible for
propagation and guarantee that the synchronisation overhead
is low.

Another natural and common candidate, as found in the
literature, is to parallelize the search. Search consists in
walking a (virtual) tree, splitting a problem into one or more
sub-problems that can be handled independently and thus, in
parallel. The scalability potential of tree search is encouraging,
specially when concerned with doing so at large scale.

III. GPI

GPI1 (Global address space Programming Interface) is a
PGAS API for parallel applications running on clusters [2].

An important idea behind GPI is the use of one-sided
communication in which the programmer is encouraged to
develop with the overlapping of communication and compu-
tation in mind. In some applications, the computational data
dependencies allow an early request for communication or a
later completion of a transfer. If one is able to find enough
independent computation to overlap with communication then,
only a small amount of time is potentially spent waiting for
transfers to finish. As only one side of the communication

1GPI was previously known as Fraunhofer Virtual Machine (FVM)

needs information about the data transfer, the remote side of
the communication does not need to perform any action for
the transfer. In a dynamic computation with evolving traffic
patterns, this can be very useful.

The thin communication layer in GPI delivers the full
performance of RDMA-enabled networks directly to the ap-
plication without interrupting the CPU. In other words, as the
communication is completely off-loaded to the interconnect,
the CPU can continue with the computation. While latency
could and should be hidden by overlapping it with useful com-
putation, data movement gets reduced since no intermediate
buffers are needed and thus, bandwidth does not get affected
by it.

From a programming model point of view, GPI provides
a threaded approach as opposed to a process-based view.
This constitutes a better mapping to current systems with
hierarchical memory levels and heterogeneous components,
than offered by, say, MPI. In GPI, the programmer views
the underlying system as a set of nodes where each node is
composed of one or more cores. All nodes are connected to
each other through a DMA interconnect. This view maps, more
or less directly, to common cluster systems. Figure 1 depicts
the architecture of GPI.

Global Memory

Node 1 Node 2 Node n

Local Memory

MCTP threads

Global Memory Global Memory

The Global Programming Interface (GPI)

DMA interconnect

MCTP threads MCTP threads

Local MemoryLocal Memory

Fig. 1. GPI architecture

As already mentioned, GPI is a PGAS API. As in every
PGAS model and from the memory point of view, each node
has an internal and a global memory. The local memory is
the internal memory available only to the node and allocated
through regular allocators (e.g. malloc). This memory cannot
be accessed by other nodes. The global memory is the parti-
tioned global memory available to other nodes and is where
data shared by all nodes should be placed. Nodes issue GPI
operations through the DMA interconnect.

At the node level, GPI encourages and, in a sense, even
enforces a thread-based model to take advantage of all cores
in the system. In figure 1, each core is named a MCTP
thread. MCTP, which stand for Many-Core Thread Package,
is a library used with GPI and based on thread pools that
abstract the native threads of the platform. Each thread has
access to the local and the node’s partition of global memory

as in a shared memory system. To access the global memory
on a remote node, it uses one-sided communication by means
of write and read operations. The global view of memory is
maintained but with more control over its locality.

A thread should work asynchronously, making use of one-
sided communication for data access but overlapping it with
computation as much as possible. The final objective should be
a full overlap of computation and communication, hiding com-
pletely the latency of communications. A secondary objective
is the reduction of global communication such as barriers and
their cost due to synchronisation, allowing the computation to
run more asynchronously.

In the context of this work, the most important functionality
is the read/write of the global memory. Two operations exist to
read and write from global memory independent of whether
it is a local or remote location. The important point is that
those operations are one-sided and non-blocking, allowing
the program to continue its execution and hence take better
advantage of CPU cycles. If the application needs to make
sure the data was transferred (read or write), it needs to call
a wait operation that blocks until the transfer has finished,
asserting that the data is usable.

IV. MACS

MaCS is a parallel complete constraint solver based on
GPI. It is a fork from PaCCS (Parallel Complete Constraint
Solver) [7]. Both PaCCS and MaCS are parallel constraint
programming libraries that aim at exploiting the features of
each programming model.

PaCCS was designed from the ground up, with parallel
execution on a network of multiprocessors in mind and ex-
hibits good scalability on the different systems. PaCCS is
implemented with MPI where a distinguished process initiates
the search, collects solutions, detects termination and returns
answers. In PaCCS, load-balancing is achieved by means of
work-stealing. By this we mean that when a search agent has
covered its assigned search space, it then tries to obtain another
search space from the other agents in the system. The idle
agent first tries to obtain work from an agent in its immediate
neighbourhood, constituted by the agents in the same shared-
memory system. Failing that, it then expands the considered
neighbourhood until it encompasses the whole parallel search
system. Work-stealing outside the agent’s immediate neigh-
bourhood is done by proxy, with work requests having a
commom origin becoming aggregated.

MaCS on its hand, although building upon PaCCS, is a
more recent implementation. Its main objective is to provide
an efficient and scalable constraint solver that takes advantage
of parallel systems, using GPI and its programming model.
It aims at large scale, exploiting the declarative nature of
constraint programming to allow users to benefit from large
and recent parallel systems. On the other hand, MaCS provides
yet another use-case for a study on GPI and its programming
model and if it can be of advantage when implementing
parallel constraint solvers targeted at large scale.

A central element is the store. The store represents the set
of variables’ domains of the CSP. Each variable’s domain is
implemented as a fixed-size bitmap. A store is self-contained
and implemented as a continuous region of memory where
each cell is the bitmap of the domain of each variable. This
turns a store into a relocatable object that can be moved
or copied to other memory regions. This self-contained and
compact representation is essential in a distributed setting and
definitely a key point in MaCS’ parallel performance.

From a different point of view, a store is also the unit
of work where computation happens and that shapes the
solving process. Consequently, it is the piece of data that is
communicated between workers in order to keep the whole
computation balanced.

Worker

In MaCS, the main and single entity is that of a worker.
Each worker maintains a pool of work from which we can
retrieve work packages when the current one is exhausted.
There is no other entity to control and manage communication
(controller). This is one of the points where MaCS departs
from PaCCS.

The architecture of MaCS mimics directly that of GPI in
which there is a notion of locality in terms of data. In GPI,
the underlying system is viewed as a set of nodes where each
node is composed of one or more cores. Cores in a node are
closer to each other and communicate through shared memory
whereas cores in another node are remote and communication
and access to data is done through the DMA interconnect. In
MaCS, workers on the same node are closer to each other
when compared to those on a remote node and the view of
data is thus different. Hence, it is a natural choice to treat the
local and remote cases differently.

Worker Pool

A central aspect of the architecture of MaCS is the worker
pool. Each worker has one pool from where work is retrieved,
new work packages are inserted and from where other workers
can steal, in order to maintain load balance. Hence, its imple-
mentation is critical because it determines the amount of work
available to other workers and must be efficient since it is the
central data structure that stores the tasks to be performed by
the worker.

We wanted to leverage our previous work with UTS and
general parallel tree search [1]. Since that solution has proved
scalable to implement dynamic load balancing with work
stealing, the worker pool uses the same data structure used
in that work.

Figure 2 depicts the worker pool again, now in a closer
view.

Recall that the pool is divided into two regions, the shared
and private regions. The private region is only accessed by
the worker who is the owner of the pool whereas the shared
region can be accessed by other workers (e.g.to steal work).
The private region is between the head and split pointers and,
as illustrated by the arrows, grows and shrinks by updating the

tail head

shared private

split

Fig. 2. Worker pool

head and split pointers. Both pointers can be moved back and
forth. The shared region is between the split and tail pointers.
It can also grow and shrink. Shrinking happens by updating
the tail pointer or the split pointer but growing only happens
when the split pointer is updated towards the head.

The reason to divide the pool in two regions is that it allows
us to have an efficient mechanism to add and retrieve from the
pool, a very frequent operation. Both operations can, if there
is work, be performed without mutual exclusion or conditional
statements since they only require the manipulation of the head
pointer which, as it is known to be private, is only manipulated
by the worker owning the pool.

Clearly, the access to the shared region must be synchro-
nised to ensure correctness. Moreover, each work package can
lead to the generation of further work and if two workers take
the same work package, a redundant work generation (and
processing) might happen. Each worker pool has a lock that
is used when the shared region is to be updated i.e. updating
the tail or split pointers.

The split pointer divides the two regions and has to be
periodically updated, keeping a good balance between both
regions. Particularly important is to maintain enough work
in the shared region for idle workers to take. The pointer
is moved towards the head when there is the need to share
work, increasing the shared region. On the other hand, it is
moved towards the tail when the private region is empty and
the shared region still has available work.

The worker pools are placed in the GPI global memory, for
global availability.

V. DYNAMIC LOAD BALANCING

Our implementation is based on the observation that a
dynamic and asynchronous load balancing scheme based on
GPI and required by parallel tree search is orthogonal to the
problem at hand. Based on this observation, MaCS leverages
our previous work with the UTS benchmark [1], which aims
exactly at characterising such mechanism.

The current search path may be invalid. A worker there-
fore invokes a restore procedure in order to obtain a new
store to work on. The restore procedure encompasses all the
mechanisms to keep a worker as busy as possible and is
hence responsible for the whole load balance of the parallel
computation.

The first step of restoring a store is to acquire, if possible,
work from the worker’s own pool or in other words, another
store. Already this acquire operation can contribute to a good
or bad load balance. However, if the worker pool is empty

and no new store can be retrieved, the restore procedure must
resort to work stealing from some other worker.

Recall that the worker pool (Figure 2) is divided in two
regions: private and shared. The restore procedure tries to first
retrieve a new store from the private region of the worker pool.
In case this region is empty, the shared region will be inspected
for the availability of work. If work is available in this shared
region, some work is acquired, shrinking the shared region.

The work stealing approach used in MaCS distinguishes
local and remote work stealing. This is, as previously noted,
because it elegantly maps to the GPI programming model and
our target systems.

Local Work Stealing

When a worker has no more work in its worker pool, the
first measure it applies is to steal work from a worker on
the same node. The worker trying to steal becomes the thief
and the worker where work is to be stolen becomes the victim.
Each thief can access the pool of the victim without disturbing
it and the stealing operation is entirely driven by the thief.

Local stealing only happens at the shared region of the pool
of the victim. If this region is empty, a local steal cannot
succeed even if the victim has any work in its private region.

One important aspect is the choice of the victim. Different
heuristics can be used for this: a random victim, the victim
with more work available, the next victim according to each
worker’s identifier, etc. Currently, MaCS includes two different
options for selecting a victim: greedy and max steal. With the
greedy variant, the first victim found with available work is
chosen. The max steal variant is less eager but more costly:
the thief checks all n−1 possible victims and chooses the one
with the largest shared region.

Remote Work Stealing

The last step a worker performs before turning to idleness it
to try to steal remotely, from workers on a different node. As
mentioned, the stealing operation should disturb the victim as
little as possible. Although mainly driven by the worker that
needs to find work (thief), the remote steal operation needs
some cooperation from the remote worker (victim).

The first step to a remote steal is to decide where to steal
from that is, the remote node to steal from. The choice of
the potential victim can, as in the local case, be subject to
different heuristics. Once the potential victim is selected, the
thief must look for work on that node. Instead of sending a
request message for work, the thief can simply read the state
of the remote node i.e. the state of all worker pools on that
node and choose the one which has a surplus of work, since
all worker pools are in global memory and thus accessible
to a GPI read operation. To read the pool state of a worker
means accessing the meta-data of the worker pool and see if
its shared region has work packages available to steal. Only
when the thief has found a worker which has work in its shared
region of the pool, is an actual request written to that worker.
This reduces the probability of requests which yield a negative
answer (failed steals) since the request is only sent to a worker

that has a surplus of work, when the read was performed. The
requirement to write an explicit request is due to the fact that
stealing work must be atomic, to avoid redundant work. If
two workers could steal the same store from a pool, this store
would be processed twice and generate the same sub-problems.
After sending the request, the thief will wait for a response
from the victim.

To be able to respond to work requests, each worker must
poll for these requests, introducing an extra step in the worker
main loop. When a worker finds a request for a remote steal
and has available work, part of it is reserved for the steal.
The reservation is simply a shrink of the shared region of the
worker pool, moving the tail towards the head and, as in the
case of a local steal, the operation is atomic. The victim queues
a request to write the reserved work directly to the worker
that issued the request and returns to its normal work loop.
The objective here is to overlap that communication with the
computation of the victim worker, reducing the total overhead
of polling and communication. Moreover, the queued write
request is performed in-place i.e. directly to the head of the
thief’s pool, avoiding any intermediate copies.

Although a thief only writes a request to a victim when a
surplus of work is visible, sometimes this request might yield
a failed steal. When the victim acknowledges the request, it
can happen that its pool no longer has a surplus of work (e.g.
it was consumed or locally stolen). To avoid this situation and
reduce the number of failed steals, in MaCS, the victim tries to
fulfil that request. Since it does not have a surplus of work, it
performs a reservation of work from some other local worker
which has a surplus of work and writes that work back to the
thief. This is possible since, locally, all workers can access
each others pool and these are placed on the global memory
of GPI. Not only can a worker access and communicate work
from other pool, it can do so without much overhead except
that coming from finding the worker with a surplus of work.

The MaCS polling approach increases the parallel overhead.
On problems that are more regular and require less movement
of work among nodes, polling is an unnecessary and excessive
step. To cope with this, we use a dynamic polling strategy
to mitigate the effect in such cases. A polling interval is
introduced which grows and shrinks according to the number
of successful poll operations: if the poll fails, the polling
interval grows and increases the time between poll operations
and hence reducing their total number and (possibly) their
negative effect; if a poll succeeds, the opposite happens and
the polling interval becomes more frequent.

VI. EXPERIMENTAL EVALUATION

In this section, we present the results obtained with MaCS
and PaCCS for different problems.

The experiments were conducted on a cluster system where
each node includes a dual Intel Xeon 5148LV (“Woodcrest”)
(i.e. 4 CPUs per node) with 8 GB of RAM. The full system
is composed of 620 cores connected with Infiniband (DDR).
Given the machine availability, we performed our experiments
on the system using up to 512 cores.

Problems

In our experimental evalution we used different problems,
both representative of satisfaction and optimisation problems.

The first used problem is the well-know N-Queens problem.
The N-Queens problem is a classical CSP example. Although
simple, the N-Queens is compute intensive and a typical
problem used for benchmarks. The problem consists of placing
N queens on a chessboard so that it’s not possible for a queen
to attack one other one on the board. This means no pair of
queens can share a row, a column or a diagonal and that these
are our constraints.

The Quadratic Assignment Problem (QAP) is a NP-hard
problem and a fundamental combinatorial optimisation prob-
lem. In this problem for a given set of n locations and n
facilities, the objective is to assign each facility to a location,
with a minimal cost. The cost of each possible assignment is
the result of multiplying the prescribed flow between each pair
of facilities by the distance between their assigned locations,
and sum over all the pairs.

A formal mathematical definition of the QAP can be written
as follows:

min

n∑
i=1

n∑
j=1

dp(i)p(j) × fi,j

where F and D are two n by n matrices. The element (i, j)
of the flow matrix F represents the flow between facilities i
and j and the element (i, j) of the distance matrix D represents
the distance between location i and j. The vector p represents
an assignment as a permutation where p(j) is the location to
which facility j is assigned.

N-Queens: The first problem to be evaluated is the N-
Queens problem. We choose the instance where n = 17 and
count the total number of solutions. This represents a problem
with a considerable size to experiment in a larger scale.

Running this problem with MaCS built-in statistics provides
a closer view of the computation and gives some hints at
possible improvements. Figure 3 depicts how much time, on
average, is spent by workers on each of the major states.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8 16 32 64 128 256 512

%
 o

f
to

ta
l

No. of cores

Overhead

Working
Searching
Searching remote
Stealing
Idle
Releasing
Barrier
Poll
Find remote
Wait remote

Fig. 3. Working time and Overhead

From Figure 3 we can see that workers are most of the
time busy (Working state). But although most of the time
is spent working, there is a considerable amount of time
spent in Releasing, a state which refers to the time, within
the main work loop, of releasing work on the worker pool.
Also, at a larger scale, the influence of Polling for remote
requests constitutes another source of overhead although this
is expected since there is a large number of workers and
a growing number of steal operations. All other states (e.g.
waiting for steals, idle) have a very low contribution in terms
of overhead and are almost negligible.

Figure 4c presents performance in terms of number of stores
processed per second. The performance of MaCS continues to
increase as we grow the number of cores but is lower and even
slightly diverging from the ideal case.

To this performance aspect, it is also interesting to add how
the processing of stores (nodes) is performed in this problem.
In terms of representation, the N-Queens problems is rather
small: 17 variables which represents a store size of 136 bytes.
On the other hand, the total number of nodes processed is
quite large (757914186), at a very high rate (e.g. around 40
million nodes per second with 256 cores). Which means that
the necessary time to process each node is very small and that
the number of nodes generated and consumed also happens at
a high rate.

In fact, looking at MaCS statistics and the time spent on the
three steps of the solving procedure (propagation, splitting and
searching) we observe the following distribution: propagation
takes around 48%, splitting around 10% and restoring takes
around 42% of the total time. This distribution is constant and
independent of the number of cores used. The most noteworthy
fact is that a large portion is spent on retrieving stores from the
pool (restoring) which also helps to explain the high overhead
incurred by releasing work: releasing happens often and since
processing a store is a fast operation, the overhead of releasing
becomes more noticeable.

With respect to load balancing and work stealing, Table I
presents the number of successful local and remote steals as
well as the number of failures. The total number of attempts
to steal (local and remote) is thus, the sum of these values
(not presented).

Unsurprisingly, the number of steals (local and remote)
increases as more cores are used although at different rates
as the number of remotes steals increases slightly faster.

A more meaningful aspect is that the number of total steals
is significantly low when compared with the total number of
nodes processed, reflecting a lower requirement in terms of
load balancing. Another important point is the relatively large
number of failed steals, in particular of the remote steals.
Failed remote steals are incur in high overhead and a very
detrimental to parallel efficiency.

The obtained results reflect and are in accordance with the
characteristics of the N-Queens problem i.e. many solutions
which grow fast with the number of queens and sub-search
spaces of similar size and representing a balanced search space
tree.

Cores Total Nodes
Local Steals Remote Steals

Total per core Failed Rate Total per core Failed Rate
8 757914186 888 111.00 6 0.67% 59 7.37 3 4.84%

16 757914186 3895 243.43 41 1.04% 409 25.56 38 8.50%
32 757914186 18360 573.75 250 1.34% 2307 72.09 204 8.12%
64 757914186 53936 842.75 785 1.43% 7308 114.18 635 7.99%

128 757914186 187097 1461.69 2924 1.54% 29008 226.62 2483 7.88%
256 757914186 451624 1764.15 7744 1.69% 75251 293.94 7135 8.66%
512 757914186 854633 1669.21 17170 1.97% 168859 329.80 21498 11.29%

TABLE I
WORK STEALING INFORMATION - QUEENS (N=17).

Figure 4 depicts the parallel speed-up (Figure 4a) and
parallel efficiency (Figure 4b) graphs of MaCS and PaCCS.

For the case of MaCS, Figure 4 shows both the default and
best cases. As the default execution of MaCS leaves some
room for improvement, we set to improve it based on the
analysis of previous information on overhead, performance
and load balancing. The best case corresponds to the results
obtained after that analysis. More concretely, to reduce the
constant overhead on the execution caused by the worker pool
maintenance, the work release interval is optimised for better
performance.

Both MaCS (default) and PaCCS show good behaviour,
scaling well as the number of cores is increased, but it is
notorious - particularly in Figure 4b - that the default settings
of MaCS are not as efficient as it could. With eight cores (two
nodes), the parallel efficiency drops considerably (to 91%),
although less steeply after that. The overhead (Figure 3) is
limiting better scalability. After improving MaCS execution
based on the interpretation of previous data on overhead and
load balancing, we observed almost linear speed-ups with a
parallel efficiency of 96% with 512 cores. The improvement
is simply based on the reduction of the number of (extraneous)
release operations.

Quadratic Assignment Problem (QAP): The last problem
evaluated was the QAP. The results were obtained with the
esc16e instance.

The QAP exhibits similar results (Figure 5) as other op-
timisation problems (not presented) in terms of overhead
and how workers spend their time. The overhead remains
low for all states of execution, nevertheless with enlarging
polling overhead as we increase the number of used cores and
consequently the number of remote operations.

Figure 6c depicts the obtained performance with MaCS
when compared with the ideal case. The results are near
optimal, with scaling performance up to 512 cores.

This problem can be further paired with the other optimi-
sation problem in what respects how the constraint solving
processed is divided: most of the time (80%) is spent on
propagation whereas splitting and restoring consume 5% and
15%, respectively.

Table II presents the information about work stealing. It
shows that the total number of steals (local and remote)
increases as the number of cores increases. But interestingly,
the rate at which the number of steals increases is not constant.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

8 16 32 64 128 256 512

%
 o

f
to

ta
l

No. of cores

Overhead

Working
Searching
Searching remote
Stealing
Idle
Releasing
Barrier
Poll
Find remote
Wait remote

Fig. 5. Working Time and Overhead

Up to 128 cores, the number increases fairly constantly at a
factor of 4. If we observe the number of steals per core, we can
observe an increase factor of two, roughly coincident with the
increase of the number of cores. However, at a larger scale, the
number of steals increases more slowly (around of factor of
two) and when we observe the number of steals per core, we
see this number staying more constant, with a slight decrease
at 512 cores. This tendency is valid for both local and remote
steals.

Another aspect relates to the number of failed steals: their
number increases as the number of cores used is increased
but remain very low - ideal up to 32 cores with zero failures
- when compared with the total number of attempts to steal
and when compared with the results obtained with the other
problems.

The QAP is an optimisation problem and as such, the most
hindering factor is the growth on the number of nodes to
process. It has a less deterministic execution than a satisfaction
problem since the number of processed stores depends on how
fast the optimal solution is found and how fast this optimal
solution is received and used by all workers. As the number
of cores increases, the number of processed nodes most often
increases as well, increasing the size of the problem when
compared with the sequential execution.

With the QAP, number of nodes (stores) processed by each

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
-u

p

No. of cores

Queens 17 - Speed-up

MaCS
PaCCS

MaCS (best)

(a) Speed-up

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512

E
ff
ic

ie
n
c
y

No. of cores

Queens 17 - Efficiency

MaCS
PaCCS

MaCS (best)

(b) Efficiency

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 8 32 64 128 256 512

P
e
rf

o
rm

a
n
c
e
 (

M
n
o
d
e
s
/s

e
c
)

No. of cores

Queens 17 - Performance

Ideal
MaCS

(c) Performance

Fig. 4. Queens (17) - Scalability

Cores Total Nodes
Local Steals Remote Steals

Total per core Failed Rate Total per core Failed Rate
8 328312656 1026 128.29 6 0.58% 54 6.75 0 0.00%

16 327522857 5499 343.71 24 0.43% 396 24.75 0 0.00%
32 327263896 19492 609.12 95 0.49% 1764 55.14 0 0.00%
64 327927026 78562 1227.54 403 0.51% 7325 114.45 13 0.18%

128 330423697 296747 2318.34 1612 0.54% 31601 246.88 52 0.16%
256 332779179 558626 2182.13 3007 0.54% 63200 246.88 266 0.42%
512 330921152 1203946 2351.46 4467 0.37% 136694 266.98 982 0.71%

TABLE II
WORK STEALING INFORMATION - QAP (ESC16E).

run is not always the same, usually incrementing as we grow
the number of cores. However, from Table II we can see that
the growth is not substantial.

Figure 6 depicts the scalability obtained for the QAP
problem for up to 512 cores. The obtained speed-ups are
almost linear (Figure 6a) with a parallel efficiency above 90%
(Figure 6b).

Both MaCS and PaCCS show good scalability up to 512
cores. With 512 cores, MaCS shows a slightly better efficiency
(93%) than PaCCS (90%) but both results are very similar.
Also in this problem, MaCS’ default settings reveal to be
enough and the best.

The QAP sees, on average, a low increment on the total
number of nodes than other optimisation problems and there-
fore does not suffer as much in terms of scalability. Moreover,
the work stealing mechanism is more efficient, with much less
failures.

A. Discussion

For compactness and space limitation, we only presented the
results of two different problems as instances of satisfaction
and optimisation problem. It is noteworthy to add that the
behaviour observed in these two example is well transported
for other problem of the same classes of problems.

The performance evaluation from the previous sections
showed that it is possible to obtain good scalability with
MaCS on a large number of cores and with different kinds
of problems.

The problems have similarities but also some differences
which were made clear by the performance evaluation. The

sizes of the different problems, in terms of the number of
nodes processed, are of the same order of magnitude. The same
can be said of the requirements in terms of load balancing
where the ratio between the number of stolen stores and the
total number of nodes processed is, on all problems, less than
0.5%. However, there are two important differences: the rate
at which steals happen and their failure rate. These differences
are related to the node throughput (performance) and the
constraint solving process.

The evaluated CSP, N-Queens, exhibits a high node through-
put since processing a single store is a fast operation. As a
consequence, the accesses to and maintenance of the worker
pool play an important role on scalability. On one hand the
overhead incurred from releasing work on the pool is large,
limiting better efficiency. On the other hand, more time is spent
retrieving stores from the pool, including stealing operations
which happen at a higher rate. Hence, both problems show a
high rate of failed steals (local and remote).

The detailed evaluation of the different aspects allowed
us to better understand the overall behaviour and for the
problems with scalability problems, namely the N-Queens,
it was possible to improve their scalability, reducing the
overhead caused the release operations by simply increasing
the interval at which they should happen.

In the case of the evaluated COP, processing a single store
is more costly and hence there is a lower node throughput.
Moreover, COPs suffer from an increasing problem size as
more cores are added which has effects on their scalability. On
the QAP, the growth on the number of nodes processed is not
substantial and thus the parallel efficiency stays high (above

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
-u

p

No. of cores

QAP (esc16e) - Speed-up

MaCS
PaCCS

(a) Speed-up

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512

E
ff
ic

ie
n
c
y

No. of cores

QAP (esc16e) - Efficiency

MaCS
PaCCS

(b) Efficiency

 0

 2

 4

 6

 8

 10

 12

 14

 16

 8 32 64 128 256 512

P
e
rf

o
rm

a
n
c
e
 (

M
n
o
d
e
s
/s

e
c
)

No. of cores

QAP (esc16e) - Performance

Ideal
MaCS

(c) Performance

Fig. 6. QAP - Scalability

90% up to 512 cores). Moreover, the QAP is a problem is
the problem with a lower rate of stealing failures (local and
remote).

Finally, it is constructive to refer to the capability and
performance of MaCS in terms of sequential execution. In
our performance evaluation, we compared the scalability of
MaCS with that of PaCCS. PaCCS has showed comparable
performance with Gecode and since MaCS is a fork from
PaCCS, sharing or re-implementing most of the implementa-
tion specially in terms of constraint propagation, similar results
were obtained. In other words, the sequential execution of
MaCS is comparable with that of PaCCS.

VII. RELATED WORK

There has been a much more extended stream of work
in parallel search as a way to exploit parallelism in CP.
Some work steams from previous research in the field of
Logic Programming([13]). Often cited work in parallel search
integrated in a constraint solver is that of Perron [15], [14].
New states are entered using re-computation and a communi-
cation layer is responsible for load balancing and termination
detection. The presented results are rather modest and in a
small-scale (up to 4 workers).

Parallel constraint solving is included into COMET [16]
by parallelizing the search procedure [17]. Workers work
their sub-problem and when idle, a work stealing mechanism
is used. The generation of work to be stolen is lazy, only
occurring at the time of a work request from an idle worker.
The sub-problem is placed in a centralised work pool where it
can be stolen by the idle worker. Several problems were tested
resulting in good speedups but only up to 4 workers.

The work mentioned so far presents results in a smaller scale
(up to 16 processors) but work on larger scale has also been
investigated. In [18], the authors experiment with up to 64
processors using a work stealing strategy and where workers
are organised in a worker tree. All communication happens
along the structure of workers where bounds, solutions and
requests for work are passed. Work stealing is done directly
by the idle worker after having received the information from
the master of whom has the largest amount of work.

In [19], the authors present the first study on the scalability
of constraint solving on more than 100 processors. They use

two approaches, portfolios and search space splitting, and
apply it to the N-Queens problem and SAT solving. Using
hashing constraints to split the search space (there is no
communication involved), their results show good speedup up
to 30 processors but not beyond that.

Large-scale parallel constraint solving is investigated
in [20]. Experiments are performed on up to 1024 processors
in a particular architecture, the IBM Blue Gene L and P. In
their approach, processors are divided into master and worker
processes, where workers explore a particular sub-tree and
master processes coordinate the workers, dispatching work
to them. The master keeps a tree-shaped pool where work
to be dispatched is kept. The work in the pool is generated
by workers when it is detected that a large sub-tree is being
explored. Experiments with up to 256 processors have made
clear that a single master can be a bottleneck. After adding
multiple masters, scalability improves up to 1024 processors
in some problems.

The UTS benchmark is often seen as a representative of
unbalanced computations that require dynamic load balancing.
An UPC implementation of the UTS benchmark is presented
and evaluated in [10]. Dinan et. al [9] study the implications
and performance of a design targeted at scale where the
authors present the first demonstrations of scalable work
stealing up to 8092 cores. More recently, UTS and state space
search problems in general, implemented with work stealing,
remain a topic of intensive research and researchers continue
to improve methods to deal with large scale computations and
the hierarchical setup of current systems [22], [21].

VIII. CONCLUSION

Given the increasing number of processing units on current
systems, with a hierarchical setup, a declarative programming
approach definitely increases the productivity of the program-
mer, who may concentrate on the problem at hand and less on
aspects related to parallelism.

In this paper we presented MaCS, a new parallel constraint
solver which provides a high-level declarative approach tar-
geted at large-scale parallelism.The main goal of MaCS was to
take advantage of GPI to implement a parallel constraint solver
which would perform well in large scale parallel systems,

validating some ideas of PaCCS and introducing different and
new options.

MaCS uses a compact and self-contained representation of
a store. A store becomes an independent unit of work, suitable
to relocation and to be handled by all participating workers.
This representation allowed us to directly adapt the developed
work with UTS to implement MaCS and hence, benefit from
GPI and the work stealing strategy to deal with load balancing.

In the architecture of MaCS only one type of worker exists,
responsible for all actions related to constraint solving as well
as controlling the parallel execution. Although the amount of
work for each worker increases, it is possible to keep the
overhead low and achieve good scalability.

The approach taken and based on the observation that, from
the parallelization point of view, parallel constraint solving
could benefit from a general framework proved fruitful. The
experimental evaluation of MaCS showed a scalable parallel
constraint solver on different problems with different char-
acteristics. Moreover, the detailed evaluation of the different
components and from different perspectives revealed and iden-
tified important aspects such as sources of overhead which,
together with MaCS parameters, helped achieving high parallel
efficiency and speedups up to 512 cores.

Our aim of experimenting with large parallel systems was
advantageous since as the number of processing units grows,
the behaviour of programs is different. It becomes harder
to exploit parallelism, requiring different and efficient, even
sometimes counter-intuitive, approaches.

The encouraging results obtained with MaCS support the
goal of further extending this work in many ways. One is to
extend the study of MaCS’ behaviour to more problems, with
different characteristics and experiment at larger scale in terms
of the number of processors (cores) used and type of hardware
(Intel Xeon Phi, GPUs). As observed in the performance
evaluation, Constraint Optimisation Problems suffer from a
growth of the problem size as more cores are added to the
solving process. Here, a more efficient dissemination of the
bound value could potentially mitigate that growth and thus,
raise the parallel efficiency at large scale on such problems.

With the continued dissemination of parallel systems, Con-
straint Programming has the possibility to be more widely
used. This work and further research could allow the devel-
opment of a general framework usable by different constraint
solvers to take advantage of such parallel systems.

REFERENCES

[1] Machado, R., Lojewski, C., Abreu, S., and Pfreundt, F. J. (2011). Un-
balanced tree search on a manycore system using the GPI programming
model. Computer Science-Research and Development, 26(3), 229-236.

[2] Machado, R., Lojewski, C.: The Fraunhofer virtual machine: a communi-
cation library and runtime system based on the RDMA model. Computer
Science-Research and Development 23(3), 125132 (2009)

[3] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P Sadayap-
pan and Chau-Wen Tseng. UTS: An Unbalanced Tree Search Benchmark
Proc. 19th Intl. Workshop on Languages and Compilers for Parallel
Computing (LCPC). New Orleans, LA, November 2-4, 2006.

[4] Diaz, D., Abreu, S., Codognet, P.: Targeting the cell broadband engine
for constraint-based local search. Concurrency and Computation: Practice
and Experience 24(6), 647–660 (2012)

[5] Martins, R., Manquinho, V., Lynce, I.: An overview of parallel SAT
solving. Constraints 17, 304–347 (2012)

[6] Michel, L., See, A., Van Hentenryck, P.: Distributed constraint-based local
search. In: F. Benhamou (ed.) CP’06, 12th Int. Conf. on Principles and
Practice of Constraint Programming, Lecture Notes in Computer Science,
pp. 344–358. Springer Verlag (2006)

[7] Pedro, V.: Constraint Programming on Hierarchical Multiprocessor Sys-
tems. Ph.D. thesis, Universidade de Évora (2012)

[8] Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs
transparently. In: C. Bessiere (ed.) CP’07, 13th Int. Conf. on Principles
and Practice of Constraint Programming, Lecture Notes in Computer
Science, pp. 514–528. Springer Verlag (2007)

[9] James Dinan, Sriram Krishnamoorthy, D. Brian Larkins, Jarek Nieplocha,
P. Sadayappan Scalable Work Stealing Proc. 21st Intl. Conference on
Supercomputing (SC). Portland, OR, Nov. 14-20, 2009.

[10] Stephen Olivier, Jan Prins. Scalable Dynamic Load Balancing Using
UPC. Proc. of 37th International Conference on Parallel Processing
(ICPP-08). Portland, OR, September 2008.

[11] Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by
work stealing. In: Proc. 35th Ann. Symp. Found. Comp. Sci. (1994)
356368

[12] Alba, E.: Special issue on new advances on parallel meta-heuristics for
complex problems. Journal of Heuristics 10(3), 239–380 (2004)

[13] Van Hentenryck, Pascal. Parallel constraint satisfaction in logic pro-
gramming: Preliminary results of Chip within PEPSys. In Proc. 6th
International Conference on Logic Programming, pp. 165-180. 1989.

[14] Perron, Laurent. ”Practical parallelism in constraint programming.” In
Proceedings of CP-AI-OR 2002, pp. 261-276. 2002

[15] Perron, Laurent. ”Search procedures and parallelism in constraint pro-
gramming.” In Principles and Practice of Constraint ProgrammingCP99,
pp. 346-360. Springer Berlin/Heidelberg, 1999.

[16] Michel, Laurent, and Pascal Van Hentenryck. ”A constraint-based archi-
tecture for local search.” In ACM SIGPLAN Notices, vol. 37, no. 11, pp.
83-100. ACM, 2002.

[17] Michel, Laurent, Andrew See, and Pascal Van Hentenryck. ”Transparent
parallelization of constraint programming.” INFORMS Journal on Com-
puting 21, no. 3 (2009): 363-382.

[18] Jaffar, Joxan, Andrew E. Santosa, Roland HC Yap, and Kenny Q.
Zhu. ”Scalable distributed depth-first search with greedy work stealing.”
In Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE
International Conference on, pp. 98-103. IEEE, 2004.

[19] Bordeaux, Lucas, Youssef Hamadi, and Horst Samulowitz. ”Experiments
with massively parallel constraint solving.” In Proceedings of the 21st in-
ternational jont conference on Artifical intelligence, pp. 443-448. Morgan
Kaufmann Publishers Inc., 2009.

[20] Xie, Feng, and Andrew Davenport. ”Solving scheduling problems using
parallel message-passing based constraint programming.” In Proceedings
of the Workshop on Constraint Satisfaction Techniques for Planning and
Scheduling Problems COPLAS, pp. 53-58. 2009.

[21] Ravichandran, Kaushik, Sangho Lee, and Santosh Pande. ”Work stealing
for multi-core hpc clusters.” Euro-Par 2011 Parallel Processing (2011):
205-217.

[22] Narang, Ankur, Abhinav Srivastava, Ramnik Jain, and R. Shyamasundar.
”Dynamic Distributed Scheduling Algorithm for State Space Search.”
Euro-Par 2012 Parallel Processing (2012): 141-154.

