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Abstract

An approach to the control of a distributed collector solar field relying on feedback linearization, Lyapunov based adaptation
and a simplified plant model is presented. The control objective consists of manipulating the oil flow so that the outlet oil tem-
perature is regulated around a given setpoint. For dealing with plant nonlinearities and external disturbances, a nonlinear trans-
formation is performed on the accessible variables such that the transformed system behaves as an integrator, to which linear
control techniques are then applied. Since the transformation depends on an unknown parameter, an adaptation law is designed so
as to minimize a Lyapunov function for the whole system’s state. For the sake of control synthesis a simplified plant model which
retains the bilinear nonlinearity is employed. The resulting control law has the same control structure of the one yielding exact
input-output linearization but assumes a different placement of a temperature sensor. In order to justify this procedure, plant
internal dynamics is studied. Experimental results obtained in the actual field are presented. © 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

This paper is mainly concerned with an experimental
case study on adaptive nonlinear temperature control in
a distributed collector solar field.

The field considered yields a power of 0.5 MW. It con-
sists (Figs. 1 and 2) of a series of parabolic mirrors which
concentrate solar radiation on a pipe, located along its
focus, where oil gets heated while circulating. Fig. 3 (left)
shows the detail of the solar collectors, where the pipe is
seen as a white rod. In between every two collectors, the
picture also shows the sensor of the automatic sun track-
ing system installed on the field. Fig. 3 (right) shows the
deposit from which the oil to be heated is pumped from
the bottom, through the field, and back to the top of the
deposit. The thermal energy of the oil is extracted in
another circuit and may be used either for water desali-
nation or in a small thermoelectric unit. The objective of
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the control system is to maintain the outlet oil tem-
perature at a desired level in spite of disturbances, such
as changes in the solar radiation level, inlet oil tem-
perature or optical efficiency of the mirrors caused e.g.
by dust deposition. The manipulated variable is the oil
flow (or, equivalently, oil velocity). More details can be
found in Refs. [5-8].

Due to the degree of nonlinearities present, linear
methods cannot perform well in this plant under all
operating conditions. Fig. 4 shows the simulation of the
response of the outlet oil temperature to a sequence of
20°C steps in the reference. These results were obtained
by simulation on a distributed parameter model of the
field. The controller used in this example is a constant
gain PID with the gains selected according to the Taka-
hashi rule [22], being optimized for u =4.5, 1/s. The
proportional, integral and derivative gains are, respec-
tively, kp, = 0.053, k1 = 0.066 and kp = 0.11. As seen on
Fig. 4, when the operating temperature increases, the
response degrades and a steady oscillation appears.

Furthermore, plant parameters and in particular mir-
ror optical efficiency may change unpredictably in time.
Fig. 5 shows the daily evolution of the temperature at
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the outlet of two different collector rows. While the oil
flow and solar radiation are approximately the same for
both rows, the time instant for which their temperature
reaches the highest value differ noticeably. This is due to

Fig. 1. A global view of the ACUREX solar collector field.
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Fig. 2. Simplified diagram of the ACUREX field.

the fact that the shape of the collectors composing them
is not exactly the same, thereby affecting the optical focus.
It may even change unpredictably in time, due to wind or
thermal mechanical stress. Dust deposition also affects
optical efficiency. Although the nonlinearities could be
compensated by using multiple linear controllers and
gain-scheduling [11], the presence of uncertainty means
that there is room for improvement with adaptive
methods.

For tackling the above uncertainty effects, this paper
resorts to an adaptive nonlinear controller based on
feedback linearization [9,21], combined with Lyapunov
based adaptation [8,10]. The basic idea consists in using
the accessible variables from the plant to perform a
transformation such that the new obtained system
behaves approximately as a linear one. This transfor-
mation is derived from a simplified lumped parameter
bilinear model which approximates a plant’s distributed
parameter model. The resulting equivalent linear system
is then controlled by linear methods. The linear con-
troller computes a new signal (called hereafter virtual
control) which is transformed back and applied to the
real plant. Since the transformation depends on an
unknown parameter (optical efficiency), this is estimated
on-line. For that sake, an adaptation law is designed for
ensuring the semidefinite character of the time deriva-
tive of a candidate Lyapunov function.

By using a reduced complexity model, the step of
feedback linearization becomes very simple. It remains
to justify whether the approximations performed are
valid. For that sake, it is shown that the resulting con-
trol law has the same structure of the one yielding exact
input-output linearization but assumes a different pla-
cement of one of the temperature sensors. Also, a study
of plant internal dynamics is made. Furthermore,
experimental results obtained in the actual plant are
presented in order to show that the transformed plant is
actually close to an integrator.

Fig. 3. Detail of the solar collectors (left) and the oil deposit.
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The control of the plant considered has been the sub-
ject of several studies [3-8,12,17,18,20]. These include
different types of adaptive predictive control strategies
such as GPC [6], adaptive cascade control [20], fuzzy
control [17], switching control [15] and other methods.
The generality of the above works rely however on con-
centrated parameter models defined a priori and do not
exploit the structure of the partial differential equation. In
[7,12] a simplified analysis assuming the internal dynamics
to be decomposable as a sum of sinusoids concludes
that the plant presents anti-resonance characteristics
and advantage is taken of this fact for control design.

The control of solar collector plants other than the one
considered here but with a similar structure has been stu-
died in [14,16] where an optimal control approach was
followed. The problem is formulated in terms of a dis-
tributed parameter model, similar to the one considered in
this paper. The solution relies on a maximum principle,
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Fig. 4. Output temperature and reference (above) and manipulated
variable (below) with a constant gain PID controller (simulation).
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Fig. 5. Daily evolution of the temperature at the outlet of two col-
lector rows.

together with the method of characteristics for partial
differential equations. Both optimal and suboptimal
bang-bang control strategies result. The control objec-
tives in [14,16] are however substantially different from
the ones considered in this paper and the other men-
tioned references. Opposite to [14,16], where a fixed
optimisation horizon is sought, most of the work refer-
red concerns the steady-state optimisation of a quadratic
cost. Here, in particular, the control synthesis does not
rely on the optimisation of a functional.

The approach followed in this paper is new with
respect to the ones described above. Indeed, explicit use is
made of the plant distributed parameter model, an
approximation being made that simplifies control design
while retaining the key aspects of plant nonlinear char-
acter. Furthermore, a detailed study is made of plant
internal dynamics when the outlet oil temperature is con-
stant. In this respect, it should be mentioned that [7,12]
have obtained related (but not equal) results, using dif-
ferent methods and in a much different context. Although
[16,14] derive their control law from the partial differential
equation model, their formulation of the control problem
is much different from the one considered here. The
emphasis of this paper is to tackle plant uncertainty and
parameter variations by the use of adaptive nonlinear
methods together with simplified models.

Although solar energy is by itself an important issue,
it is remarked that the approach followed here may in
its generality be applied to other types of plants with a
similar structure. Large heat exchangers and plug-flow
tubular reactors controlled by variation of flow rate [19]
provide examples.

The paper is organized as follows. Section 1 (this sec-
tion) formulates and motivates the problem as well as
its solution. The plant is shown not to be adequately
controllable over a wide range of operating conditions
by a constant gain PID. The control approach followed
in this paper is explained, together with its novelty with
respect to other previous works described in the litera-
ture. Section 2 concerns plant dynamics. A model for a
single loop of the solar collector field is written in the
form of a partial differential equation. By means of a
space discretization, this is approximated by a lumped
parameter bilinear model. Plant dynamics including
plant equilibria and reachable states are discussed. In
Section 3, input—output exact feedback linearization is
obtained. Corresponding plant internal dynamics are
discussed and compared with a modified control law to
be used due to practical constraints. Section 4 addresses
the problem of nonlinear adaptive control design.
Motivated by the results in the previous section, a sim-
plified model which corresponds to an approximation of
the temperature space derivative is used as a basis for
nonlinear adaptive control design. Section 5 presents
experimental results obtained in the actual ACUREX
field. In the first experiment, the linearization procedure
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based on the simplified model is shown to be a reason-
able approximation. In the second experiment the over-
all nonlinear adaptive control system is demonstrated.
Finally, Section 6 draws conclusions.

2. Plant dynamics

Consider a single loop of the solar collector field.
Given the small diameter of the pipe when compared to
its length, and assuming incompressibility of the fluid
and no diffusion, it is possible to model the temperature
distribution along the pipe by a partial differential
equation (PDE) of the form [5]:

Tz, 1)
ot

oT(z, 1)

uld) oz

aR O

where the following notation is used: 7(z,) is the dif-
ference of oil temperature with respect to the inlet oil
temperature (assumed constant), at each position z of
the pipe and at time ¢, u is the manipulated variable oil
speed (proportional to oil-flow), R is the corrected solar
radiation and « is a parameter depending mainly on the
optical efficiency of the mirrors. In the above model
heat losses to the environment are not considered.

Assuming a smooth variation of oil temperature
along the pipe, it is possible to approximate the tem-
perature distribution by a piecewise linear curve, so that
the following finite difference approximation holds:

oT _Ti—Tiy

=L ©)

g |Z€(Zi—l .z =

where / is the length of each segment, n is the number of
segments, z; = ih, L=nh is the pipe length and T;= T(ih,1).
Defining the state variables

xit) = T(h,f) i=1,...n 3)

process dynamics is thus approximately described by the
system of nonlinear ordinary differential equations:

1
X; = —MZ(X,‘—X[_l)—i-OtR, i=1,..,n 4)

where the dot denotes derivative with respect to time ¢
and xq=0.
Defining the state x =[x,...x,]" and the vector fields

X1
X2 — X1

1
gx) = —z

1 Xn — Xp—1

f(x) =aR

system (4) is written in the form

X = f(x) + g(x)u %)
It is remarked that f(x) is actually independent of x and,
in particular, f(0) # 0. Furthermore, the field g(x) may

be written as

g(x) = Bx

with matrix B given by

1 0 - 0
p__L| -1

L

0 11

For n high enough, the piecewise linear approxima-
tion of the spatial distribution of temperature is accep-
table and model (4) [or, equivalently, (5)] describes
reasonably well the transport and heating phenomena
inside the pipe [1].

2.1. Equilibrium states

Fig. 6 shows the state (i.e. the value of temperature
distribution along the pipe) at four different times. This
simulation is performed with n=100, «aR=1, L=100 m,
h=1m and u(t) is a decreasing step with initial value 100
and final value 25, the transition occurring at =1 s. The
absolute values of temperature and radiation have no
physical meaning and they should be understood as nor-
malised values. What is important to notice in the result
expressed by Fig. 6 is the shape of the equilibrium dis-
tribution of oil temperature under a constant flow and
radiation and the way it evolves in the presence of a flow
change. As seen in Fig. 6(a), under a constant flow (and
in the presence of constant radiation), the temperature
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Fig. 6. System state in four time instants after a decrease in oil flow:
(@) t=1s,(b)t=2s,(c)t=3s,(d) t=4s.
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increases along the pipe as a straight line. This assumes
that losses to the environment are neglegible. Losses
cause a temperature decrease and, consequently, a
“bending” downwards of the curve expressing spatial
temperature distribution. In the presence of losses, this
would no longer be a straight line. The oil pipe in the
ACUREX field of Plataforma Solar de Almeria is inside
a glass pipe (seen in Fig. 3 as the “white rods”). This
causes a green-house effect, thereby greatly reducing
losses. Since the main purpose of this paper is control
design with a model as simple as possible, losses will be
neglected hereafter.

The above discussion may be formalised as follows.
The system described by (1) will reach an equilibrium state
when, for all z¢€[0,L] the partial derivative of temperature
with respect to time vanishes. From (1) it is seen that for
constant u and «R, equilibrium temperature distributions
are given by

Z

R R
T 1) = T(0, 1) + J iz = 10,0+ %

0

i.e. they are straight lines in space. A similar conclusion
applies to the space discretized system (4). The details
are ommited.

2.2. Reachable states

Characterising the set of reachable states (spatial tem-
perature distributions) is of interest because it provides
the ground for the approximate model used in Section 4
as a basis for control design. Indeed, the arguments
below show that the only possible spatial temperature
distributions are monotonically increasing in space.
Furthermore, the temperature values are bounded.

The set of reachable states depends on the constraints
imposed on the flow (manipulated input) and solar
radiation (disturbance input). These are given by

0 < tmin < u(t) < Umax (6)
and
0< Rmin < R(t) < Rmax (7)

In the ACUREX field of Plataforma Solar de Almeria
the minimum value of the flow results from safety con-
siderations and is given by uy;, =2 1/s. The maximum
depends on the value yielded by the pump, being given
by tmax =9 1/s. The radiation is clearly always positive
and bounded by a value corresponding to a perfectly
bright summer day. Below R=100 W/m? the field is
automatically stopped for safety reasons, so that a
minimum value for radiation has also to be considered.
It should be added that thre oil temperature must be
below the maximum value of 290°C which is imposed
by safety reasons.

The characterisation of the reachable set of states of
model (1) is performed in two steps. In the first step, the
space derivative of T for z=0 (collector’s input) is
computed. In the second step, it is shown that the signal
= ‘;—f propagates along the pipe with a velocity equal
to the oil velocity. The conjunction of both these steps
allows one to conclude that the temperature has always
a finite derivative. This in turn implies that 7(z,7) is a
continuous function. It is remarked that the derivative
may not itself be continuous.

If Ti, and R are constant, then the set of reachable
states of (1) is the set of continuous functions in the
interval [0,L] with minimum and maximum values of
the derivative given, respectively, by & and K.

Consider now the finite dimensional approximation
(5). Let M be the state space associated with (5). In this
case M = R". The reachability algebra C of (5) [13] is the
smallest Lie algebra of vector fields in M containing f
and g. It is shown in [13] that any element of C is a lin-
ear combination of the vector fields generated by taking
successive Lie brackets of f'and g. In this way, it is casy
to show that any element of C is generated by the linear
combination of the three following vectors:

1

1 0

These vectors represent the directions along which the
state x may be changed. The first vector concerns heat-
ing by solar radiation. Oil is heated uniformly along the
pipe and this corresponds to a state trajectory in the
direction [1,..., 1]7. The second vector corresponds to
the fact that it is possible to manipulate the derivative of
temperature with respect to space at the pipe inlet.
Finally, the third vector represents oil transport along
the pipe.

The finite dimensional system is non-controllable
since it is not possible to reach the whole state-space.
For instance (as in the distributed parameter model) it is
not possible to reach a distribution of temperature
which decreases along the pipe.

3. Feedback linearization

It is possible to show that system (5) is input to state
linearizable only for n=1 and n=2 [2]. This will not be
pursued here. Instead, input—output exact linearization
is considered [21,9].

3.1. Input—output linearization

Input—output exact linearization consists of finding a
state transformation (diffeomorphism)
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z = ®(x)

and input transformation

_v—=>b(x)
“= a(x)

where v is the transformed input and a(-), b(-) are con-
venient state functions (to be made precise below), such
that the transformed system has the form

Z'1 =27
22 =3
Z'rfl = Zy
Z, = (3)

Zr11 = gr+1(2)

Zy = (In(Z)
y=

where y = h(x) is the system output and r is the so called
relative degree. In this transformed form, the relation
between the new input v and the output is an integrator
of order r. The last n—r equations correspond to unob-
servable states and they must be shown to be stable.

Consider the system defined by (4) with the output
defined by

y = h(x) = x, )

The relative degree [21,9] is given by the number of
times the output y has to be differentiated at a given
time 7y so that u(ty) explicitely appears. Differentiating
the output given by (9) one obtains:
Xn — Xp—1

h
and it is concluded that the relative degree of this system

is r=1. The transformation z= ®(x) which brings the
system to the form (8) is thus of the form

y=X,=aR—

h(x)
= o= | PV (10)

;ﬁn (%)

with convenient functions ¢y, ..., ¢,. The linearizing
control law is given by
_ —L(x)+v  aR-—v
T Leh(x)

= h (11)
Xn — Xnp—1

where v is the input of the linearised system.

Eq. (11) provides a transformation such that, from
the transformed input v to the output y, the dynamics
reduces to a pure integrator. Once v is found with an
appropriate control law, the actual control u to apply to
the plant is computed from v by (11). It is remarked that
this computation requires the values of the states x, and
X,—; which must be available for measurement. The
measure of x,_; is not available in the plant considered
for values of n>1. In general, one possibility would be
to estimate this variable. Another line of work, which is
the one exploited in this paper, consists in using
approximate models.

3.2. Internal dynamics

With the above control strategy it remains to show
that the internal dynamics is stable. For the solar col-
lector plant at hand, a convenient way for studying
internal dynamics is by considering tracking dynamics
[9]. Let the initial condition x° = x(0) be compatible with
the reference signal y,(¢). This means that

7r(0) = h(x)
70(0) = Lih(x")

00) = L ()

The tracking manifold is defined by

M, = {x € M : h(x) = yi(), s L 'h(x) = yf,"*“(z)}

where M is the state-space. The tracking dynamics is the
dynamics of the system constrained to M. It corre-
sponds to the internal dynamics when the output is
perfectly tracking y.(7). Finding the internal dynamics in
general involves computing @ which, in this case,
requires a cumbersome numerical computation. So,
here, only significant special cases are considered. Fig. 7
shows the internal dynamics when the initial state is a
straight line added to a sinusoid with a period equal to
the length of the pipe. Normalised variables are used.
As seen in this picture, although the input and output
temperatures are constant, intermediate values of the
state present a noticeable oscillation. By choosing
another initial condition, a different internal dynamics is
yielded. Fig. 8 shows another example in which the
oscillations have a spatial period equal to L/3.

3.3. Internal dynamics with approximate control laws

The change of input variable (11) leads to a relation
between the transformed input v and the output y
exactly given by an integrator. It happens, however,
that in the ACUREX field of Plataforma Solar de
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Fig. 7. Example of internal dynamics. Normalized variables are used.
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Fig. 8. Another example of internal dynamics. Each curve corre-
sponds to the spatial temperature distribution at a time. Normalized
variables are used.

Almeria (PSA), while y=x, is available for measure-
ment, x,_; is in general not. Indeed, only the inlet oil
temperature is available for measurement.

In this realm, one issue with practical incidence to con-
sider is plant internal dynamics when (11) is replaced by

aR—v

“TTW - T(L—d) (12

where d is the distance between both temperature sensors.

Figs. 9 and 10 correspond to the situations in which
d=L/n (the one corresponding to exact input-output
linearization) and d=L (the one found at PSA). The
value of n is taken n=100. Each of these figures show
the time evolution of the state components, starting
from a given initial condition.

Start by considering Fig. 9. The output temperature,
corresponding to the component initialized at 1 (i.e. the
upper curve) is constant. This is what should be expected,

-—
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Fig. 9. Internal dynamics with d= L/n. Normalized variables are used.
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Fig. 10. Internal dynamics with d= L. Normalized variables are used.

since v=0 and the relation between v and y is exactly an
integrator. The other states, according to the previous
discussion on internal dynamics, present oscillations.

Consider now Fig. 10. The output is no longer con-
stant and there is an initial transient which is explain-
able by the fact that the control transformation used is
now only an approximation to the linearizing one. It is
to be remarked that internal oscillations are much
smaller in this case.

4. Control design with an approximate model

Motivated by the discussion on the previous section,
control is now designed on the basis of the model:

§ = —uy— o) +oR (13)

where y is the outlet oil temperature, yq is the inlet oil
temperature and u is the oil flow velocity. The resulting
equations may be interpreted by taking n=1.



138 M. Bardo et al. | Journal of Process Control 12 (2002) 131-141

In (13) the optical efficiency « is not exactly known in
advance and, furthermore, it includes modeling errors,
being expected to change slowly. It is thus to be esti-
mated. Let o denote the true optical efficiency, & an
estimate of o and & the difference between the two:

A=0—a (14)
Then (13) yields

. L
¥ = —uly = o)+ @+ DR (15)
From (12) the virtual control signal v is given by

1 A
v=—uly = y0) 7 +GR (16)

This may now be used to control the outlet oil tem-
perature by using a linear controller. The actual control
signal applied to the plant is given by

GR—v
u =
Y —=Jo

L (17)

Inserting (17) in (15) yields

y=v+aR (18)

Eq. (17) defines the static transformation W such that
between the variables v and y the model dynamics is
equivalent to a linear system (integrator), disturbed by
an input offset with an unknown gain.

4.1. Design of joint adaptation and control

In order to obtain an adaptation law for updating @&,
an argument based on the Lyapunov’s direct method
[21,10] is used. For that sake, consider the candidate
Lyapunov function defined by

Vie, @) = %(e2 +71/&2) (19)

where y > 0 is a constant parameter and e is the track-
ing error defined by

e(r) = yr — () (20)

v, being a constant set-point. Since the linearised system
is an integrator, there is no need to include integral
action in the controller. Thus, let the control in con-
tinuous time be given by the PD law

v=kye—kyp (21)

with k, and k; constant gains. Replacing this control
law in the transformed plant Eq. (18), yields the fol-
lowing closed loop model

i e+ g
l+kd ]+kd

§= (22)

For V' to be a Lyapunov function, its time derivative
must be nonpositive. Assuming a constant set-point and
a constant «, use (14), and get

V=—ep— Lab (23)
14

Upon using (22), this becomes

ky R | S
— — - 24
1+kde [1+kde+ya]a (24)

The adaptation law for & is chosen such that the term
multiplying & above vanishes:

14
1+kd

§=—

Re (25)

With this choice, ¥ is negative semidefinite if k, > 0 and
k4 > —1. Furthermore, by LaSalle’s invariance theorem
[21], all the trajectories converge to the maximum
invariant set where J = 0, implying that

lim (1) =y, (26)

This last conclusion applies only to the simplified
model.

5. Experimental results

The control strategy previously described was tested in
the ACUREX field. Two kinds of tests were performed.
In the first experiment only the linearizing feedback loop
is closed. The objective is to assess the viability of the
simplifications introduced by analyzing the response to
the input v. In the second experiment, a linear propor-
tional-derivative (PD) controller was included together
with the adaptation of «.

5.1. Experiment 1

The aim of experiment 1 is to show that, from the
virtual control signal v to y, the system behaves
approximatelly as an integrator, even in the presence of
strong disturbances in solar radiation. Therefore in this
experiment only the linearizing loop is closed. The results
are seen on Figs. 11-14. The system is driven by a rec-
tangular virtual control signal with varying amplitudes
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and duration (Fig. 11). As expected, a saw-tooth like
temperature signal results by integrating the piecewise
constant virtual input. This actually happens, as seen in
Fig. 12 which shows the outlet oil temperature varying
approximately as a triangular signal with different
slopes depending on the amplitude of the virtual control
(Fig. 11). Some discrepancies are explainable by the
error in the value of the estimate used for «, in accor-
dance with Eq. (18). By using a better estimate, as
would happen if an adaptive scheme is used (as in
experiment 2 below), an even better approximation to
the integrator would be obtained. It can also be seen
that the sudden reduction in solar radiation (Fig. 13) is
almost not sensed in the output since the actual control
signal compensates for it (Fig. 14).

5.2. Experiment 2

In experiment 2, the outer-loop is closed so as to track
a temperature reference. The virtual control signal v is
generated by the following discrete time version of the
PD controller (21):

(k) = kpe(k) + ka(y(k) — y(k — 1)) @7

The transformed control signal (actually applied to
the plant) is computed from v by:

Q) R(k) — v(k)

4R =00 — k)

h (28)

with the estimate & updated by the following approx-
imation to (25):

a(k + 1) = a(k) — koRe(k) (29)

A sampling time of 15 s and the following gains are
used:
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Fig. 17. Experiment 2: actual control signal applied to the plant (flow).

kp =9, ka =.0001/820, kg =15

During the experiment the radiation was roughly con-
stant, its mean value of 820 Wm~2 being lumped in the
constant k,. Fig. 15 shows the reference temperature and
average outlet temperature taken over all the 10 field
loops. Overshoot in positive steps could be reduced by
using lower gains. Fig. 16 shows how the virtual control
signal goes to approximately zero as the outlet tempera-
ture approximates the setpoint, as would be expected in
controlling a true linear integrator system. Fig. 17
shows the actual control applied to the plant.

6. Conclusions

The control of a distributed collector solar field has been
addressed. The approach followed relies on an adaptive
nonlinear controller designed on a basis of a plant reduced
complexity model. This model directly stems from a dis-
tributed parameter model expressing the physical phe-
nomena involved. Thus, the control design procedure is
expected to be applicable to other processes with a similar
structure, in particular plug-flow chemical reactors.

For justifying the simplifications assumed, the fol-
lowing studies were performed. First, a comparison with
the input—output feedback linearizing control resulting
from a much higher order model was made. It was con-
cluded that the structure of both transformations (the
ones resulting from the high order model and the simpli-
fied model) are the same, with a different placement of
one temperature sensor. The placement corresponding
to the simplified model is the one actually found in the
plant used for experimental tests and hence its interest.
The internal dynamics corresponding to both cases were
studied by simulation.

On the other hand, an experiment performed on the
actual plant shows that the reduced complexity model
leads to a reasonable approximation of an integrator.

Once the model is justified, another experiment illus-
trates the use of a Lyapunov based adaptive controller
for tackling uncertainty in collector optical efficiency.

This procedure has been shown to be a viable method
for the control of this kind of processes. Its practical
implementation is simple, while achieving a good
approximation to the exact adaptive controller.

Open issues include a stability proof which takes into
account the true plant model and the estimation of the
temperature needed for exact feedback linearization
from available plant measurements.
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