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Abstract

The pinewood nematode, Bursaphelenchus xylophilus, is one of the greatest threats to coniferous forests worldwide, causing
severe ecological damage and economic loss. The biology of B. xylophilus is similar to that of its closest relative, B.
mucronatus, as both species share food resources and insect vectors, and have very similar morphological characteristics,
although little pathogenicity to conifers has been associated with B. mucronatus. Using both nuclear and mitochondrial
DNA markers, we show that B. xylophilus and B. mucronatus form distinct phylogenetic groups with contrasting
phylogeographic patterns. B. xylophilus presents lower levels of intraspecific diversity than B. mucronatus, as expected for a
species that evolved relatively recently through geographical or reproductive isolation. Genetic diversity was particularly
low in recently colonised areas, such as in southwestern Europe. By contrast, B. mucronatus displays high levels of genetic
diversity and two well-differentiated clades in both mitochondrial and nuclear DNA phylogenies. The lack of correlation
between genetic and geographic distances in B. mucronatus suggests intense gene flow among distant regions, a
phenomenon that may have remained unnoticed due to the reduced pathogenicity of the species. Overall, our findings
suggest that B. xylophilus and B. mucronatus have different demographic histories despite their morphological resemblance
and ecological overlap. These results suggest that Bursaphelenchus species are a valuable model for understanding the
dispersion of invasive species and the risks posed to native biodiversity and ecosystems.
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Introduction

The pinewood nematode (PWN), Bursaphelenchus xylophilus

(Nematoda: Aphelenchoididae), is the causal agent of the

widespread pine wilt disease (PWD), which causes severe

ecological and economic losses in coniferous forests [1,2]. The

PWN causes the death of host trees in less than one year after

infection under appropriate environmental conditions. On the

contrary, little pathogenicity to conifers has been associated with

its closest related species, Bursaphelenchus mucronatus, despite both

species having similar morphological and biological features [3–6].

The phylogeny and evolution of the PWN species complex [7],

which includes both B. xylophilus, B. mucronatus and a few other

species within the genus Bursaphelenchus, has produced inconsistent

results depending on the genetic marker under analysis [8]. Some

doubts still remain concerning the taxonomic status of these

species, particularly given that B. xylophilus and B. mucronatus can

generate hybrids [9–12].

These nematodes are transmitted from tree to tree by wood-

inhabiting longhorn beetles that belong mainly to the genus

Monochamus (Coleoptera: Cerambycidae). The intensification of

world trade in recent decades is responsible not only for

introduction of PWD but also for the expansion of B. xylophilus

via short- and long-distance dispersals through transportation of

PWN infected wood, including unprocessed logs, wooden crates,

pallets and dunnage [13–16]. The impact of human-mediated

processes in the evolutionary history of this important plant

pathogen is not well understood. B. xylophilus is considered to be

native to North America [17], where local conifers are mostly

resistant or tolerant to this nematode [18]. However, its
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introduction in Japan at the beginning of the 20th century and

later in mainland China, Taiwan and Korea had a dramatic

impact on the newly invaded environment, causing massive

mortality of native pine trees, namely Pinus thunbergii and P.

densiflora [2]. A similar epidemic has also been occurring in

Portugal [19], where B. xylophilus is devastating vast areas of

maritime pine (P. pinaster) since 1999. The nematode has already

spread to Madeira Island [20] and Spain [21,22], representing an

increasing threat to European forests. In contrast, B. mucronatus is

widely distributed throughout the northern hemisphere, and is a

prevalent species in the cooler areas of central and northern

Europe without causing damage to the local trees. It has been

proposed that B. mucronatus originated in Eurasia [17], but almost

nothing is known about its intraspecific phylogeny. Studies on the

molecular genetics of these nematode species are usually restricted

to a geographic location and/or a single molecular marker [23–

26]. A better understanding of the evolutionary relationships

between Bursaphelenchus species is therefore needed. In this study,

we provide new insights into the intraspecific phylogeny of B.

xylophilus and B. mucronatus using mitochondrial and nuclear DNA

data from isolates of different world regions.

Materials and Methods

Nematode samples and DNA extraction
B. xylophilus isolates were obtained across mainland Portugal and

Madeira Island and other world regions where it has been

reported (North America, Japan, China and Korea). B. mucronatus

isolates were obtained in Portugal and Germany in order to

increase the worldwide dataset available at GenBank (Figure 1,

Table 1 and Table S1 in File S1). Nematodes were extracted from

wood samples using the Whitehead & Hemming tray method [27]

and identified based on diagnostic morphological characters [28].

Nematodes were then hand-picked, washed several times with

sterilised distilled water and transferred to cultures of the fungus

Botrytis cinerea grown on malt extract agar medium and incubated

at 25uC [29]. Subcultures of each nematode isolate were regularly

performed by transferring small plugs with nematodes to new malt

extract agar medium colonised with B. cinerea. Portuguese B.

xylophilus isolates were established between 2005 and 2010

(Table 1). For this study, hundreds of nematodes were gathered

from a subculture of each isolate, without separation according to

sex or developmental stage, and washed several times in sterilised

distilled water. Nematodes were then concentrated by centrifuga-

tion and the resulting supernatant was removed leaving the pellet

containing the nematodes (66,000). DNA was extracted from the

pool of nematodes as previously described [30]. No specific

permits were required for the described field studies. Collection

sites were not privately owned or protected and did not involve

endangered or protected species.

Polymerase chain reaction (PCR) and DNA sequencing
The three mitochondrial DNA (mtDNA) gene regions, cytochrome

c oxidase subunit I (COI or COX1), NADH dehydrogenase subunit 5 (ND5)

and small subunit ribosomal RNA (s-rRNA), were amplified using the

PCR primers described in Table S2 in File S1. PCR was carried

out by combining 2 ml of DNA extract, 1 ml of primer mix (2 mM

of each primer) and 5 ml of Multiplex PCR Master Mix (Qiagen

GmbH, Germany) in a 10 ml final volume. PCR was performed as

follows: an initial denaturation step at 95uC for 15 min, followed

by 30 cycles of 30 s at 94uC, 90 s at the lower annealing

temperature of the primer pair and 1 min at 72uC and a final

extension step of 10 min at 72uC. All amplifications were

performed using GeneAmp PCR Systems 2700 equipment

(Applied Biosystems, Foster City, CA, USA). Sequencing reactions

were performed in both directions by combining 2.5 ml of

amplified DNA, 0.5 ml of primer (2.5 mM) and 2 ml of Big Dye

Sequencing Kit (Applied Biosystems). The sequencing protocol

was performed as previously described [31]. Sequencing reaction

products were purified using Sephadex G-50 Fine gel filtration

beads (GE Healthcare, UK) and sequenced on an ABI 3130XL

Automated Sequencer (Applied Biosystems) following the manu-

facturer’s recommendations. Electrophoretic data were analysed

using the DNA Sequencing Analysis V5.2 software (Applied

Biosystems) and did not reveal any traces of mixed templates.

Therefore, the pool of66,000 nematodes used for DNA extraction

is assumed to be genetically homogeneous for the markers

analysed, considering the detection limit of conventional sequenc-

ing. Negative controls were used throughout the DNA extraction

and amplification processes. Sequence data were submitted to

GenBank with accession numbers JN596427-JN596470.

Phylogenetic analyses
Our sequence dataset was analysed together with homologous

sequences retrieved from the NCBI Entrez Nucleotide database

(http://www.ncbi.nlm.nih.gov) [8,21,32–35] using the Geneious

v5.4 software [36]. For most sequences retrieved from GenBank,

no indication of the sampling locality is available besides the

country of origin. In those cases, we used the central point of the

geographic area of the country (or island) to represent the

sampling area of the isolates (Figure 1). In some analyses, we

included sequences from unpublished studies reported as being

from Central and South American isolates, although their

presence in such regions and their correct identification requires

further validation. In total, we analysed 40 sequences from COI, 17

from ND5, 9 from s-rRNA, 57 from internal transcribed spacer 2

(ITS-2) and 39 from the 28S ribosomal RNA (28S rRNA) (Table 1).

All sequences from each locus were aligned using the default

parameters of the MUSCLE 3.6 software [37]. The final lengths of

the sequence alignments used in the following analyses were

453 bp for COI, 434 bp for ND5, 274 bp for s-rRNA, 334 bp for

ITS-2 and 519 bp for the 28S rRNA.

Median-joining networks of mtDNA sequences were calculated

using the NETWORK V4.6.6.0 software [38] (http://www.

fluxus-engineering.com). Default parameters were used in all

calculations. Superfluous links and median vectors were purged

from the network through the use of the post-processing ‘MP

option’ [39]. Bayesian analyses were performed with MrBayes

v3.1 software [40,41] running on the public Bioportal at www.

bioportal.uio.no [42]. The Metropolis-coupled Markov chain

Monte Carlo process was set so that four independent chains

ran simultaneously for 3,000,000 generations, each starting from a

random tree. We used the GTR+I+G model with gamma-

distributed rate variation across sites approximated by four

discrete categories and the program’s default prior probabilities

on model parameters. The average standard deviation of split

frequencies among the four independent runs at completion was

0.0108 for COI, 0.0057 for ITS-2 and 0.0066 for 28S rRNA trees,

suggesting convergence on a stationary distribution. A tree was

sampled every 1,000 generations for a total of 12,004 samples over

four runs, of which 11,604 were sampled for Bayesian posterior

probabilities (‘burn-in’ was empirically determined by checking

likelihood values). Maximum-likelihood phylogenetic trees were

constructed with the program PHYML [43], available on

Geneious v5.4 software, using the GTR+I+G substitution model,

100 bootstrap datasets, four substitution rate categories and

optimised tree topology and branch length. The transition/

transversion ratios, proportion of invariable sites and gamma
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distribution parameters were estimated by the program. Phyloge-

netic trees were drawn using FigTree v1.3.1 software (http://tree.

bio.ed.ac.uk/software/figtree). The algorithm developed by Nye et

al. [44] was used to compare the topology of alternative

phylogenetic trees. The tree comparisons were performed with

the Compare2Trees software available at http://www.mas.ncl.ac.

uk/̃ ntmwn/compare2trees/index.html. The map with the loca-

tion and frequency of samples was obtained using PhyloGeoViz

v2.4.5 [45] and Google Maps (Google Inc., Mountain View, CA).

Population genetic analyses
Basic sequence statistics and mismatch distributions [46] were

estimated using the DnaSP ver. 5.10 software [47]. Relevant

population growth parameters for the prediction of expected

mismatch distributions of COI sequences were obtained on a first

run and then used in a second run for the final analyses, as

previously suggested [48]. Estimates of evolutionary divergence

among COI sequences were determined using MEGA5 software

[49]. Analyses were performed using the Maximum Composite

Likelihood model [50]. The rate variation among sites was

modelled with a gamma distribution (shape parameter = 4) and the

differences in the composition bias among sequences were

considered in evolutionary comparisons [51]. All positions

containing gaps and missing data were eliminated from the

analyses using the MEGA5 software.

Results and Discussion

Bursaphelenchus xylophilus and B. mucronatus are distinct
species

It has been suggested that the ancestor of B. mucronatus and other

species of the genus Bursaphelenchus was a free-living nematode

inhabiting broad-leaved trees in the eastern part of Eurasia, while

B. xylophilus likely originated from a population of B. mucronatus that

colonised the North American continent [17]. Our Bayesian and

maximum likelihood trees separated all isolates from both species

with posterior probabilities and bootstrap values of 1 (Figures 2, 3,

4, Figures S1 to S4 in File S1). The Bayesian and maximum

likelihood topologies in each sequence dataset were similar, with

an overall topological score of 96.4% for COI and 100% for ITS-2

and 28S rRNA (Figure S5 in File S1). Additionally, mitochondrial

haplotypes from isolates of both species were separated by at least

35 mutational steps in the COI median-joining network (Figure 2),

which is in agreement with previous results on inter-species

mtDNA phylogeny of Bursaphelenchus [8,17]. This difference was

also evident in the mismatch distribution of COI sequences, with a

peak of around 35 to 42 pairwise differences resulting from

comparisons among isolates of both species (Figure 5). An estimate

of the evolutionary divergence between sequences showed that

both species diverge by at least 0.091 base substitutions per site

(SE = 0.027) in the COI gene (Table S3 in File S1). Therefore, the

genetic distance between B. xylophilus and B. mucronatus isolates was

always higher than between isolates of the same species. Overall,

the examination of both mitochondrial and nuclear genetic

markers enabled us to unequivocally recognise that B. xylophilus

and B. mucronatus are genetically differentiated species despite their

morphological resemblance and ecological overlap.

Figure 1. Geographical distribution of Bursaphelenchus xylophilus and B. mucronatus isolates. Pie chart symbols show the relative
proportion of isolates from both species analysed in the present study.
doi:10.1371/journal.pone.0056288.g001

The Phylogeography of Two Bursaphelenchus Species

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e56288



Table 1. Mitochondrial and nuclear DNA sequences from Bursaphelenchus xylophilus (Bx) and B. mucronatus (Bm) isolates used in
the present study.

Isolate code Isolate origin Culture GenBank accession numbers (genetic marker)

BxCa188 Canada (Quebec) AY508071 (COI), AY508108 (28S rRNA)

BxCa185 Canada AY508068 (COI), AY508105 (28S rRNA)

BxCa187 Canada (New Brunswick) AY508070 (COI), AY508107 (28S rRNA)

BxCaBC Canada (British Columbia) AB108439 (ITS-2)

BxCaFIDS Canada AB108441 (ITS-2)

BxCaQ52A Canada (Quebec) AB108444 (ITS-2)

BxCaStJ Canada AB108445 (ITS-2)

BxCaBXCANADA Canada EF446946 (ITS-2), EF446935 (28S rRNA)

BxCaCA Canada JF317229 (ITS-2), JF317239 (28S rRNA)

BxCaQ52 Canada JF317230 (ITS-2), JF317241 (28S rRNA)

BxCaBC2 Canada JF317231 (ITS-2), JF317240 (28S rRNA)

BxCaBxCAN Canada EU295503 (28S rRNA)

BxUSA618 USA 2008 JN596443 (COI), JN596460 (ND5), JN596470 (s-rRNA)

BxUSA745 USA 2008 JN596444 (COI), JN596461 (ND5)

BxUSA30697 USA JF317255 (COI)

BxUSA4049 USA JF317256 (COI), JF317232 (ITS-2)

BxUSA121AD USA JF317257 (COI), JF317234 (ITS-2), JF317244 (28S rRNA)

BxUSAMO USA AB108442 (ITS-2)

BxUSABXUSA2 USA EF446951 (ITS-2), EF446940 (28S rRNA)

BxUSAUS10 USA JF317243 (28S rRNA)

BxUSA39906 USA JF317245 (28S rRNA)

BxJT4 Japan (Iwate) ,2008 JN596430 (COI), JN596458 (ND5), AB108446/AB277207 (ITS-2)

BxJ10 Japan ,2001 JN596429 (COI), JN596459 (ND5), JN596466 (s-rRNA)

BxJpS10 Japan (Shimane) AB067766 (COI), AB277206/U92464 (ITS-2)

BxJp186 Japan (Mito) AY508069 (COI), AY508106 (28S rRNA)

BxJpAB050051 Japan (Akita, Ohmori) AB050051 (ITS-2)

BxJpAB050052 Japan (Niigata, Murakami) AB050052 (ITS-2)

BxJpAB050053 Japan (Ibaraki, Tsukuba) AB050053 (ITS-2)

BxJpKyoto1 Japan (Kyoto) AB050054 (ITS-2)

BxJpKyoto2 Japan (Kyoto) AB050055 (ITS-2)

BxJpAB050056 Japan (Yamaguchi, Tokuyama) AB050056 (ITS-2)

BxJpAB050057 Japan (Ehime, Imabari) AB050057 (ITS-2)

BxJpAB050058 Japan (Nagasaki, Shimabara) AB050058 (ITS-2)

BxJpAB050059 Japan (Okinawa, Kunigami) AB050059 (ITS-2)

BxJpOk-2 Japan (Okinawa) AB108443 (ITS-2)

BxJpC14-5 Japan (Chiba, Ichinomiya) AB277203 (ITS-2)

BxJpOKD1 Japan (Okayama, Okayama) AB277205 (ITS-2)

BxJpBCMUBX18 Japan (Aichi, Nissin, Iwasaki-cho) AB294736 (ITS-2)

BxJpAY347913 Japan AY347913 (ITS-2)

BxJpBXJ1 Japan EF446943 (ITS-2), EF446934 (28S rRNA)

BxJpXylT4 Japan DQ356002 (28S rRNA)

BxJpBxJAP Japan EU295504 (28S rRNA)

BxCSD China ,2009 JN596428 (COI), JN596456 (ND5), JN596465 (s-rRNA)

BxChBXC China AB108440 (ITS-2)

BxChAY347911 China (Xiangshan, Zhejiang) AY347911 (ITS-2)

BxChAY347912 China (Nanjing, Jiangsu) AY347912 (ITS-2)

BxChBXCNJ3 China (Nanjing, Jiangsu) EF446944 (ITS-2), EF446929 (28S rRNA)

BxChBXCAJ China (Mingguang, Anhui) EF446945 (ITS-2), EF446942 (28S rRNA)
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Table 1. Cont.

Isolate code Isolate origin Culture GenBank accession numbers (genetic marker)

BxChBXCSC China (Changdao, Shandong) EF446947 (ITS-2), EF446932 (28S rRNA)

BxChBXCNJ2 China (Nanjing, Jiangsu) EF446948 (ITS-2), EF446941 (28S rRNA)

BxChBXCGD China (Dongguan, Guangdong) EF446950 (ITS-2), EF446933 (28S rRNA)

BxChBXCZZ China (Zhoushan, Zhejiang) EF446952 (ITS-2), EF446937 (28S rRNA)

BxChXM_1 China (Fujian) EU259322 (ITS-2)

BxChDQ364687 China (Xiangshan) DQ364687 (28S rRNA)

BxChBXCNJ1 China (Nanjing, Jiangsu) EF446930 (28S rRNA)

BxChBXCNJ4 China (Nanjing, Jiangsu) EF446931 (28S rRNA)

BxChBxLYG China (Lianyungang) EU295491 (28S rRNA)

BxTaNe6/05 China (Taiwan) AM179515 (ITS-2)

BxTaTWRC China (Taiwan) JF317242 (28S rRNA)

BxKAS South Korea ,2008 JN596431 (COI), JN596457 (ND5), JN596467 (s-rRNA)

BxPt11AS Portugal (Alcácer do Sal) 2005 JN596432 (COI), JN596447 (ND5)

BxPt15SC Portugal (Santiago do Cacém) 2007 JN596433 (COI), JN596448 (ND5)

BxPt17AS Portugal (Alcácer do Sal) 2007 JN596434 (COI), JN596449 (ND5), JN596468 (s-rRNA)

BxPt19SCD Portugal (Santa Comba Dão) 2008 JN596435 (COI), JN596450 (ND5), JN596469 (s-rRNA)

BxPt21T Portugal (Tábua) 2008 JN596436 (COI), JN596451 (ND5)

BxPt56M Portugal (Mealhada) 2009 JN596438 (COI), JN596446 (ND5)

BxPt60OH Portugal (Oliveira do Hospital) 2009 JN596437 (COI), JN596445 (ND5)

BxPtHF Portugal (Herdade de Ferraria) AB277204 (ITS-2)

BxPtTroia Portugal (Troia) AB277208 (ITS-2)

BxPtPT1w Portugal (Pegões) AM157747 (ITS-2), AM396580 (28S rRNA)

BxPtBXPOT Portugal EF446949 (ITS-2), EF446936 (28S rRNA)

BxMad1F Portugal (Madeira Island) 2010 JN596439 (COI), JN596452 (ND5)

BxMad2M Portugal (Madeira Island) 2010 JN596440 (COI), JN596453 (ND5)

BxMad3F Portugal (Madeira Island) 2010 JN596441 (COI), JN596454 (ND5)

BxMad4SV Portugal (Madeira Island) 2010 JN596442 (COI), JN596455 (ND5)

BxSpEFA1 Spain HQ646254 (ITS-2)

BxMe39906-1 Mexico JF317253 (COI)

BxMe39906-2 Mexico JF317254 (COI)

BxMe39906 Mexico JF317233 (ITS-2)

BmJpM Japan AB067765 (COI)

BmJp163 Japan AY508049 (COI), AY508086 (28S rRNA)

BmJp424B Japan JF317260 (COI), JF317235 (ITS-2), JF317246 (28S rRNA)

BmChAY347915 China (Hong Kong) AY347915 (ITS-2)

BmChAY347916 China (Fuyang, Zhejiang) AY347916 (ITS-2)

BmChBMCSC China (Zhoushan, Zhejiang) EF446953 (ITS-2), EF446938 (28S rRNA)

BmChXM China (Fujian) EU296624 (ITS-2)

BmKo39571 South Korea JF317261 (COI), JF317236 (ITS-2), JF317247 (28S rRNA)

BmKoAY347914 South Korea AY347914 (ITS-2)

BmPt1 Portugal 2008 JN596463 (s-rRNA)

BmPt2 Portugal 2008 JN596464 (s-rRNA)

BmSp860A Spain JF317262 (COI)

BmG1 Germany ,2001 JN596427 (COI), JN596462 (s-rRNA)

BmG166 Germany (Zusmarshausen) AY508052 (COI), AY508089 (28S rRNA)

BmG167 Germany (Grunberg) AY508053 (COI), AY508090 (28S rRNA)

BmG168 Germany (Zusmarshausen) AY508054 (COI), AY508091 (28S rRNA)

BmFi165 Finland AY508051 (COI), AY508088 (28S rRNA)

BmNo164 Norway (Hanestad) AY508050 (COI), AY508087 (28S rRNA)

The Phylogeography of Two Bursaphelenchus Species
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Bursaphelenchus xylophilus and B. mucronatus have
contrasting patterns of intraspecific diversity

The nucleotide diversity within the COI gene was 0.014

(SD = 0.002) for B. xylophilus and 0.034 (SD = 0.002) for B.

mucronatus (Table 2). The average number of nucleotide differences

in the COI gene was also lower in B. xylophilus (6.44) than in B.

mucronatus (15.30), as clearly shown by the mismatch distribution

(Figure 5). The evolutionary divergence among COI sequences

indicated that B. xylophilus isolates were not separated by more

than 0.045 base substitutions per site, while several B. mucronatus

isolates were separated by a higher number of base substitutions,

with some reaching 0.065 per site (Table S3 in File S1). Similarly,

the nucleotide diversity in nuclear sequences (ITS-2 and 28S rRNA)

was lower in B. xylophilus than in B. mucronatus (Table 2). The

average number of nucleotide differences was 2.26 for ITS-2 and

1.52 for 28S rRNA in B. xylophilus and 8.57 for ITS-2 and 6.20 for

28S rRNA in B. mucronatus (Table 2). The same result was obtained

when the isolates from Central and South America for which

classification is doubtful where excluded from the analyses (Table

S4 in File S1). There was also a more conserved dispersion of B.

xylophilus lineages across phylogenetic trees, with branches

separated by smaller numbers of substitutions per site than in B.

mucronatus (Figures 2, 3, 4, Figures S1 to S4 in File S1).

Table 1. Cont.

Isolate code Isolate origin Culture GenBank accession numbers (genetic marker)

BmUk38624 Ukraine JF317258 (COI)

BmUk53106 Ukraine JF317238 (ITS-2)

BmRuBMRUSSIAN Russia EF446939 (28S rRNA)

BmIs5459 Israel JF317237 (ITS-2)

BmBr4228 Brazil JF317259 (COI)

The list includes sequences from the mitochondrial cytochrome c oxidase subunit I (COI), NADH dehydrogenase subunit 5 (ND5) and small subunit ribosomal RNA (s-
rRNA) genes and the nuclear internal transcribed spacer 2 (ITS-2) and 28S ribosomal RNA gene (28S rRNA). The accession numbers in bold indicate new sequences
obtained in this work.
doi:10.1371/journal.pone.0056288.t001

Figure 2. Median-joining network of mitochondrial cytochrome c oxidase subunit I (COI) haplotypes of Bursaphelenchus xylophilus and
B. mucronatus. The area of the circles is proportional to the frequency of isolates in the sample, and the branch length is proportional to the number
of mutations.
doi:10.1371/journal.pone.0056288.g002
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The low levels of intraspecific diversity detected in B. xylophilus

by comparison to B. mucronatus may have at least two explanations.

First, the high indices of genetic diversity detected in B. mucronatus

may result from the existence of two well-defined subclades in

mitochondrial and nuclear phylogenies. The presence of two

distantly related lineages within B. mucronatus is confirmed by the

peak of around 20 to 25 pairwise differences in the mismatch

distribution (Figure 5). Second, the levels of genetic diversity in B.

xylophilus are reduced, as expected for a species that evolved

relatively recently through geographical or reproductive isolation.

For instance, low genetic diversity among B. xylophilus isolates from

mainland Portugal and Madeira Island was observed using several

genetic markers [25,35,52,53] and is in agreement with a drastic

reduction in population size at the moment of the introduction of

an invasive species.

The worldwide phylogeography of B. xylophilus
The most frequent B. xylophilus COI haplotype was found to be

shared by two Japanese, one Chinese, one Korean and all

Portuguese (both mainland and Madeira Island) isolates (Figure 2,

Figure 3. Bayesian phylogenetic tree based on internal transcribed spacer 2 (ITS-2) sequences of Bursaphelenchus xylophilus (Bx) and
B. mucronatus (Bm). Support values are given in Bayesian posterior probabilities. The scale bar represents nucleotide substitutions per site.
doi:10.1371/journal.pone.0056288.g003

Figure 4. Bayesian phylogenetic tree based on 28S ribosomal RNA (28S rRNA) gene sequences from Bursaphelenchus xylophilus (Bx)
and B. mucronatus (Bm). Support values are given in Bayesian posterior probabilities. The scale bar represents nucleotide substitutions per site.
doi:10.1371/journal.pone.0056288.g004
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Figures S1 and S2 in File S1). The mitochondrial haplotype found

in Portuguese isolates was absent from North America (the other

putative source population), although the sample size in this region

is still too small to draw definitive conclusions (Figure 2, Figures S1

and S2 in File S1). Nevertheless, the presence of identical

mitochondrial and nuclear DNA sequences in all Portuguese B.

xylophilus isolates is in agreement with the hypothesis that a single

founder lineage from Asia arrived only once in southwestern

Europe. It is unlikely that the founder population was a mixture of

several lineages that were all subsequently lost by stochastic effects

because the power of genetic drift is reduced on expanding

populations. It could be argued that the long-term maintenance of

nematodes in culture enhances the genetic differences among

isolates due to repeated population bottlenecks. However, all

Portuguese isolates collected in different years presented identical

DNA sequences for all the genetic markers analysed (Table 1). We

also analysed B. xylophilus isolates across the entire range of

dispersion in Portugal to guarantee a good representation of all

extant lineages. It is therefore clear that repeated population

bottlenecks are not affecting the cultured isolates since genetic drift

can only occur in the presence of genetic variation.

The recently identified B. xylophilus isolate in northwestern Spain

[21,22] also clustered with the Portuguese isolates, suggesting a

common origin followed by local dispersion (Figure 3). Similarly,

our phylogeographic investigation indicates that B. xylophilus

isolates from Madeira Island are likely to be related to isolates

from mainland Portugal (Figure 2), although an independent

introduction from Asia (where the same haplotype exists) cannot

be completely ruled out. Still, it is likely that the dispersal of this

nematode to the Atlantic island has a continental European origin

owing to the more intense trade of wood products.

The association between Portuguese and Asian lineages was also

detected by the analysis of nuclear DNA markers (Figures 3 and 4,

Figures S3 to S4 in File S1). In contrast with the results obtained

with mtDNA analysis, a few North American isolates clustered on

the Asian/Portuguese branch in phylogenetic trees built using

nuclear DNA sequences (Figures 3 and 4, Figures S3 to S4 in File

S1). These shared lineages could be those initially introduced in

Asia from the North American continent. Nevertheless, nuclear

DNA analysis does not completely exclude the possible direct

introduction of North American isolates in Europe. Future work

with larger samples will be necessary to completely exclude this

hypothesis.

The results using different methods of phylogenetic analyses are

in agreement with the hypothesis that B. xylophilus as a species

originated in North America, as the lineages from Canada and the

USA were found on different branches on most phylogenetic trees

(Figures 3 and 4, Figures S1 and S2 in File S1). This is clear when

analysing both mitochondrial and nuclear DNA, particularly in

the COI and ITS-2 trees (Figures 2 and 3, Figures S1 and S2 in File

Figure 5. Mismatch distributions of cytochrome c oxidase subunit I (COI) haplotypes for Bursaphelenchus xylophilus and B. mucronatus
isolates (combined and separated). The number of differences between pairs of sequences is given on the horizontal axis with relative
frequencies represented on the vertical scale.
doi:10.1371/journal.pone.0056288.g005
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S1), and could explain the two-peaked mismatch distribution of B.

xylophilus COI sequences (Figure 5). Moreover, North American B.

xylophilus lineages were separated by a high number of base

substitutions. For instance, two isolates from the USA diverge by

0.023 (SE = 0.008) base substitutions per site in the COI region

(Table S3 in File S1). This high diversity among North American

lineages is expected in the native area of a population, while areas

where B. xylophilus was recently introduced showed lower levels of

genetic diversity due to founder effects [54].

The worldwide phylogeography of B. mucronatus
B. mucronatus haplotypes were found to be widespread and did

not show any geographical association (Figure 2, Figures S1 and

S2 in File S1). Isolates from distant geographic regions were not

necessarily related phylogenetically. In fact, the same COI

haplotype was present in isolates sampled at locations as distant

as Brazil, Finland, Japan and Germany (Figure 2). Conversely, B.

mucronatus isolates within the same region (Germany) belonged to

very distant phylogenetic branches of the COI median-joining

network (Figure 2). Two of these German haplotypes diverged by

0.065 base substitutions per site (SE = 0.019) in the COI region

(Table S3 in File S1). The COI median-joining network (Figure 2)

suggests that two or even three haplogroups exist in B. mucronatus

(the cluster of haplotypes at the tip of the network and the two

interior branches), although additional samples are necessary to

clearly exclude the existence of intermediate haplotypes. The

Bayesian and maximum likelihood trees built with COI sequences

show two clearly separated B. mucronatus branches supported by

very high posterior probabilities and bootstrap values (Figures S1

and S2 in File S1). When evolutionarily divergent lineages were

co-analysed, they yielded a large number of pairwise nucleotide

substitutions, while pairs of haplotypes sharing a common origin

matched quite closely. This pattern is clearly visible on the graph

artificially mixing B. xylophilus and B. mucronatus isolates with a peak

of around 37 nucleotide differences (Figure 5). This phenomenon

is also visible on a smaller scale in the mismatch distribution of B.

mucronatus, suggesting the existence of two well-differentiated

haplogroups.

The observed weak genetic structure accompanied by high

levels of diversity reflects the presence of two highly divergent

lineages in B. mucronatus and/or that intense gene flow among

distant regions may be common in this species and has remained

unnoticed due to its reduced pathogenicity. The absence of star-

like clusters of haplotypes in median-joining networks (Figure 2,

Figures S6 and S7 in File S1) and the multimodal mismatch

distribution (Figure 5) excludes the possibility of an abrupt

population growth (for instance, from a bottlenecked population)

with a recent worldwide dispersion, which would explain the

presence of shared haplotypes in different geographic regions. In

addition, the shared haplotypes occupy the tips of networks

(Figure 2), which indicates that they are relatively recent and do

not represent old lineages that still persist in extant populations.

Other historical demographic events, such as a wide range

selective sweep wherein a given haplotype favoured by selection

spreads across the species range, are unlikely because they would

lead to low levels of genetic diversity in addition to weak

phylogeographical patterns [55].

The different genetic patterns observed in B. xylophilus and B.

mucronatus isolates may result from multiple factors that affect their

dispersion across short and long distances. A different phylogeog-

raphy would be expected if B. xylophilus evolved recently from a B.

mucronatus population in North America through geographical or

reproductive isolation. The higher genetic diversity of B. mucronatus

could be the result of an earlier origin in Eurasia [17].
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Anthropogenic activities are also important for the spatial and

genetic structure of Bursaphelenchus species. The relevance of

human-assisted dispersion has already been shown for Asian B.

xylophilus isolates using microsatellite data [24] and mathematical

modelling [14–16]. The spread is facilitated by highways, railways,

river ports and lakes, and nematodes are transported within insect

vectors or independently within wood itself [2,13,14].

The pathogenic nature of B. xylophilus may also impose a

different selective pressure on their populations (i.e., reducing their

genetic diversity), which is absent in B. mucronatus. Additionally,

these nematodes rely on longhorn beetles of the genus Monochamus

for its natural dispersal. It is possible that specific host-vector

interactions occur in both Bursaphelenchus species conferring them

different dispersion capacities. Further studies are necessary to

uncover the combination of human activities and ecological factors

that shape the different genetic landscapes of B. xylophilus and B.

mucronatus.

Supporting Information

File S1 Supporting Figures S1 - S7 and Tables S1 - S4.

(PDF)

Acknowledgments

We are grateful to Paulo Vieira and Pedro Barbosa for helping with sample

collections.

Author Contributions

Conceived and designed the experiments: FP. Performed the experiments:

FP CM LF BvA. Analyzed the data: FP CM LF BvA AA. Contributed

reagents/materials/analysis tools: MM IA AA. Wrote the paper: FP.

References

1. Dwinell LD (1997) The pinewood nematode: Regulation and mitigation. Annu

Rev Phytopathol 35: 153–166.

2. Mota M, Vieira P (2008) Pine wilt disease: a worldwide threat to forest

ecosystems. The Netherlands:Springer Verlag .

3. Cheng XY, Xie PZ, Cheng FX, Xu RM, Xie BY (2009) Competitive

displacement of the native species Bursaphelenchus mucronatus by an alien species

Bursaphelenchus xylophilus (Nematoda: Aphelenchida: Aphelenchoididae): a case of

successful invasion. Biol Invasions 11: 205–213.

4. Kanzaki N, Futai K (2006) Is Bursaphelenchus mucronatus a weak pathogen to the

Japanese red pine? Nematology 8: 485–489.

5. Maehara N, Aikawa T, Kanzaki N (2011) Inoculation of several Bursaphelenchus

xylophilus group nematodes into adult trees of Pinus thunbergii and their survival in

the trees. Forest Pathol 41: 477–481.

6. Mamiya Y, Enda N (1979) Bursaphelenchus mucronatus n.sp (Nematoda,

Aphelenchoidadae) from pine wood and its biology and pathogenicity to pine

trees. Nematologica 25: 353–361.

7. Webster JM, Anderson R, Baillie D, Beckenbach K, Curran J, et al. (1990) DNA

probes for differentiating isolates of the pinewood nematode species complex.
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