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ABSTRACT. In this work it is presented some existence, non-existence and location results for
the problem composed by the second order fully nonlinear equation

(E) u′′ (x) + f (x, u (x) , u′ (x)) = s p(x)

for x ∈ [a, b] , where f : [a, b]×R2 → R, p : [a, b] → R+ continuous functions and s a real parameter,
with the boundary conditions

(BC)
L0 (u, u (a) , u′ (a)) = 0,

L1 (u, u (b) , u′ (b)) = 0,

where L0 and L1 are contiunous functions satisfying some adequate monotonicity assumptions.

It will be done a discussion on s about the existence and non-existence of solutions for problem
(E)-(BC). More precisely, there are s0, s1 ∈ R such that:

· for s < s0 or (s > s0) there is no solution of (E)-(BC).

· for s = s0 problem (E)-(BC) has one solution.

The arguments used apply lower and upper solutions technique, a Nagumo condition and a
priori estimations.

AMS (MOS) Subject Classification. 34B15, 34K10

1. INTRODUCTION

Consider the problem composed by the equation

(1.1) u′′ (x) + f (x, u (x) , u′ (x)) = sp (x)

with x ∈ [a, b] , where f : [a, b]×R2 → R and p : [a, b] → R+ : (0, +∞) are continuous

functions and s a real parameter, and the functional boundary conditions given by

(1.2)
L0 (u, u (a) , u′ (a)) = 0,

L1 (u, u (b) , u′ (b)) = 0,
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where L0, L1 : C([a, b])× R2 → R satisfy some adequate monotone conditions.

This type of problem with a discussion on the number of solutions of the boundary

value problem was introduced in [1] and since then are known as Ambrosetti-Prodi

problems. Several authors apply this type of discussion to different problems using

variational methods, such as [2, 7, 18], or topological techniques, as in [5, 9, 11, 13,

14, 16, 17].

However, as far as we know, an analysis of parameter dependence has never been

applied to problems with functional boundary conditions, as in 1.2. The functional

dependence in the solution of the equation on the boundary data, allows a huge

generality, including, for instance, cases of multipoint, deviated arguments, advances

or delays, nonlocal, integro-differential, with maxima or minima arguments,.... These

potentialities can be seen, for example, in [3, 4, 6, 10] and the references therein.

The main arguments used in this paper make use of a Nagumo condition, [15],

to obtain an a priori estimate on the first derivative, and lower and upper solutions

method.

At the best of our knowledge, sufficient conditions to guarantee the multiplicity

of solution for second order Ambrosetti-Prodi functional boundary value problems, is

still an open problem.

2. DEFINITIONS AND AUXILIARY RESULTS

In this section we introduce the notations and definitions needed moving forward,

together with some useful results.

In the following, Ck([a, b]) denotes the space of real valued functions with con-

tinuous i-derivative in [a, b], for i = 1, ..., k, equipped with the norm

‖y‖Ck = max
0≤i≤k

{∣∣y(i)(x)
∣∣ : x ∈ [a, b]

}
.

By C([a, b]) we denote the space of continuous functions with the norm

‖y‖ = max
x∈[a,b]

|y(x)| .

Throughout this paper the following hypotheses will be assumed:

(H1) L0 : C([a, b]) × R2 → R is a continuous function nondecreasing in the first and

third variable.

(H2) L1 : C([a, b]) × R2 → R is a continuous function nondecreasing in the first and

nonincreasing in the third variable.

A Nagumo-type growth condition will be assumed on the nonlinear part of the

differential equation. This will be an important tool to prove an a priori bound for
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the derivative of the corresponding solutions. The condition is given by the following

definition:

Definition 2.1. Consider Γ, γ ∈ C ([a, b]) , such that, Γ (x) ≥ γ (x) , ∀x ∈ [a, b] , and

the set

E =
{
(x, y, z) ∈ [a, b]× R2 : γ (x) ≤ y ≤ Γ (x)

}
.

A function g : [a, b] × R2 → R is said to verify a Nagumo-type condition in E if

there exists ϕ ∈ C ([0, +∞) , (0, +∞)) such that

(2.1) |g (x, y, z)| ≤ ϕ (|z|) ,

for every (x, y, z) ∈ E, and

(2.2)

∫ +∞

k

s

ϕ (s)
ds > max

x∈[a,b]
Γ (x)− min

x∈[a,b]
γ (x)

where k is given by

k := max

{
Γ (b)− γ (a)

b− a
,
Γ (a)− γ (b)

b− a

}
.

Lemma 2.2. Let f : [a, b]×R2 → R be a continuous function, verifying Nagumo-type

conditions (2.1) and (2.2) in

E =
{
(x, y, z) ∈ [a, b]× R2 : γ (x) ≤ y ≤ Γ (x)

}

where γ (x) and Γ (x) are continuous functions such that, γ (x) ≤ Γ (x) , for every

x ∈ [a, b] .

Then there is R > 0 such that for every solution u (x) of equation (1.1) satisfying

(2.3) γ (x) ≤ u (x) ≤ Γ (x) , ∀x ∈ [a, b] ,

we have ‖u‖ < R.

Proof. The arguments considered for this proof are similar to standard ones presented

in [13], considering

(2.4) g (x, y, z) = sp (x)− f (x, y, z)

and ϕ̄ (|z|) := |s| ‖p‖+ ϕ (|z|), as the integrals
∫ +∞

k

s

ϕ (s)
ds and

∫ +∞

k

s

|s| ‖p‖+ ϕ (|z|)ds,

are of the same kind.

The main tool used throughout this paper is the lower and upper solution method.

Consider the definition:
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Definition 2.3. A function α ∈ C2 ([a, b]) is said to be a lower solution of the problem

(1.1)-(1.2) if:

(2.5) α′′ (x) ≥ sp(x)− f (x, α (x) , α′ (x)) ,

and

(2.6)
L0 (α, α (a) , α′ (a)) ≥ 0,

L1 (α, α (b) , α′ (b)) ≥ 0,

A function β ∈ C2 ([a, b]) is said to be an upper solution of the problem (1.1)-(1.2) if

the reversed inequalities hold.

3. General existence and localization result

The arguments used in the proof require the following lemma, given in [19]:

Lemma 3.1. For v, w ∈ C(I) such that v(x) ≤ w(x), for every x ∈ I, define

q(x, u) = max{v, min{u,w}}.

Then, for each u ∈ C1(I) the next two properties hold:

(a) d
dx

q(x, u(x)) exists for a.e. x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I) then

d

dx
q(x, um(x)) → d

dx
q(x, u(x)) for a.e. x ∈ I.

We are now in a position to introduce the existence result.

Theorem 3.2. Let f : [a, b]× R2 → R be a continuous function. Suppose that there

exist upper and lower solutions of the problem (1.1)-(1.2), respectively, α (x) and

β (x), such that,

α (x) ≤ β (x) , ∀x ∈ [a, b] ,

f satisfies Nagumo conditions (2.1) and (2.2) in

E∗ =
{
(x, y0, y1) ∈ [a, b]× R2 : α (x) ≤ y0 ≤ β (x)

}
.

If conditions (H1) and (H2) hold then the problem (1.1)-(1.2) has at least a

solution u (x) ∈ C2 ([a, b]), satisfying

α (x) ≤ u (x) ≤ β (x) , ∀ x ∈ [a, b] ,

and |u′ (x)| ≤ K, where

(3.1) K = max {k, |α′ (x)| , |β′ (x)|} .
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Remark 3.3. If there exist functions, α (x) and β (x) , lower and upper solutions of

the problem (1.1)-(1.2) for some values of s, then s belongs to a bounded set, as

α′′ (x) + f (x, α (x) , α′ (x)) ≤ sp (x) ≤ β′′ (x) + f (x, β (x) , β′ (x)) ,

for every x ∈ [a, b] .

Proof. Define the continuous functions

(3.2) δ (x, y) = max {α (x) , min {y, β (x)}}
and

η (v (x)) = max

{
−K, min

{
d

dx
(v (x)) , K

}}
for a.e. x ∈ R.

Consider the modified problem composed by the equation

(3.3) u′′ (x) = sp (x)− f

(
x, δ (x, u (x)) , η

(
d

dx
(δ (x, u (x)))

))

and the boundary conditions,

(3.4)

u (a) = δ

(
a, u (a) +

L0 (δ (·, u) , δ (a, u (a)) , u′ (a))

)
,

u (b) = δ

(
b, u (b) +

L1 (δ (·, u) , δ (b, u (b)) , u′ (b))

)
.

The proof will follow several steps:

Step 1 - Every solution u of problem (3.3) – (3.4), satisfies α (x) ≤ u (x) ≤ β (x)

and |u′ (x)| < K, for every x ∈ [a, b], with K > 0 given in (3.1).

Let u be a solution of the modified problem (3.3) – (3.4). Assume, by contradic-

tion, that there exists x ∈ [a, b] such that α (x) > u (x) and let x0 ∈ [a, b] be such

that

(3.5) min
x∈I

(u− α) (x) := (u− α) (x0) < 0.

As, by (3.4), u (a) ≥ α (a) and u (b) ≥ α (b), then x0 ∈ (a, b) . So, there is

(x1, x2) ⊂ (a, b) such that for x0 ∈ (x1, x2) ,

(3.6) u (x) < α (x) ,∀x ∈ (x1, x2), (u− α) (x1) = (u− α) (x2) = 0.

Therefore, for all x ∈ (x1, x2) it is satisfied that δ (x, u) = α (x) and d
dx

(δ (x, u)) =

α′ (x) . Therefore we deduce that

u′′ (x) = sp (x)− f

(
x, δ (x, u (x)) , η

(
d

dx
(δ (x, u (x)))

))

= sp (x)− f (x, α (x) , α′ (x))

≤ α′′ (x) for a. e. x ∈ (x1, x2).
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Hence (u−α)′ is nonincreasing on the interval (x1, x2). However as (u−α)′(x0) =

0, then (u− α) is nonincreasing on (x0, x2), which contradicts (3.5) and (3.6).

The inequality u(x) ≤ β(x), in [a, b] , can be proved in the same way and, so,

(3.7) α (x) ≤ u (x) ≤ β (x) , ∀ x ∈ [a, b] .

Applying previous bounds in Lemma 2.2, and remarking that by (3.1),
∫ K

k

s

ϕ (s)
ds ≥

∫ r

k

s

ϕ (s)
ds,

it is obtained the a priori bound |u′ (x)| < K, for x ∈ [a, b] . For details, see [3, Lemma

2.1].

Step 2 - Problem (3.3) – (3.4) has at least one solution.

For λ ∈ [0, 1] let us consider the homotopic problem given by

(3.8) u′′ (x) = λ

[
sp (x)− f

(
x, δ (x, u (x)) , η

(
d

dx
(δ (x, u (x)))

))]

and the boundary conditions

(3.9)

u (a) = λδ

(
a, u (a) +

L0 (δ (·, u) , δ (a, u (a)) , u′ (a))

)
≡ λLa,

u (b) = λδ

(
b, u (b) +

L1 (δ (·, u) , δ (b, u (b)) , u′ (b))

)
≡ λLb.

Define the operators L : C ([a, b]) → C ([a, b])×R2 by Lu = (u′′, u (a) , u (b)) and,

for λ ∈ [0, 1] , Nλ : C ([a, b]) → C ([a, b])× R2 by

Nλu =

(
λ

[
sp (x)− f

(
x, δ (x, u (x)) , η

(
d

dx
(δ (x, u (x)))

))]
, La, Lb

)
.

Since L0, L1 and f are continuous functions, then, from Lemma 3.1, Nλ is continuous.

Moreover, as L−1 is compact, it can be defined the completely continuous operator

Tλ : C ([a, b]) → C ([a, b]) by Tλu = L−1Nλ (u) .

It is obvious that the fixed points of operator Tλ coincide with the solutions of

problem (3.8) – (3.9).

Defining in C ([a, b])× R2 the norm

|(v, v1, v2)| = max {‖v‖ , max {|v1| , |v2|}} ,

by Remark 3.3,Nλu is uniformly bounded in C ([a, b]), we have that any solution of the

problem (3.8 ) – (3.9), verifies the following a priori bound ‖u‖ ≤ ‖L−1‖ |Nλ (u)| ≤
K̄, for some K̄ > 0 independent of λ.

In the set Ω =
{
u ∈ C ([a, b]) : ‖u‖ < K̄ + 1

}
the degree d (I − Tλ, Ω, 0) is well

defined for every λ ∈ [0, 1] and, by the invariance under homotopy, d (I − T0, Ω, 0) =

d (I − T1, Ω, 0) .
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As the equation x = T0 (x) is equivalent to the problem
{

u′′ (x) = 0

u (a) = u (b) = 0,

which has only the trivial solution, then d (I − T0, Ω, 0) = ±1. So by degree theory,

the equation x = T1 (x) has at least one solution, that is, the problem (3.3) – (3.4)

has at least one solution in Ω.

Step 3 - Every solution u of problem (3.3) – (3.4) is a solution of (1.1) – (1.2).

Let u be a solution of the modified problem (3.3) – (3.4). By previous steps,

function u fulfills equation (1.1). So, it will be enough to prove the following inequal-

ities:
α (a) ≤ u (a) + L0 (δ (·, u) , δ (a, u (a)) , u′ (a)) ≤ β (a) ,

α (b) ≤ u (b) + L1 (δ (·, u) , δ (b, u (b)) , u′ (b)) ≤ β (b) .

Assume that

(3.10) u (a) + L0 (δ (·, u) , δ (a, u (a)) , u′ (a)) > β (a) .

Then, by (3.4), u (a) = β (a). By (2.6) and previous steps, it is obtained the following

contradiction with (3.10):

u (a) + L0 (δ (·, u) , δ (a, u (a)) , u′ (a)) = β (a) + L0 (β, β (a) , β′ (a))

≤ β (a) .

Applying similar arguments it can be proved that

α(a) ≤ u (a) + L0 (δ (·, u) , δ (a, u (a)) , u′ (a)) .

and

α (b) ≤ u (b) + L1 (δ (·, u) , δ (b, u (b)) , u′ (b)) ≤ β (b) .

4. Existence and Non-existence results

For clearness of arguments the dependence of solution on s will be discussed in

[0, 1] , without loss of generality. The obvious modifications must be considered in

the corresponding definitions of lower and upper solutions. Some extra hypotheses on

the continuous functions L0, L1 are required to obtain the existence and nonexistence

results:

Theorem 4.1. Let f : [0, 1] × R2 → R be a continuous function that verifies the

assumptions on Theorem 3.2. Moreover if :

(i)

(4.1) f (x, y0, y1) is nonincreasing on y0;
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(ii) there is s1 ∈ R and r > 0 such that

(4.2)
f (x, 0, 0)

p (x)
< s1 <

f (x,−r, 0)

p (x)
,

for every x ∈ [0, 1] ;

(iii) boundary functions L0, L1 verify conditions (H1), (H2) and

(H3) Li (z, z, 0) ≥ 0, for every z ≤ −r, and Li (0, 0, 0) ≤ 0, for i = 0, 1,

then there is s0 < s1 (with the possibility that s0 = −∞) such that:

1) for s < s0, (1.1)-(1.2) has no solution.

2) for s0 < s ≤ s1, (1.1)-(1.2) has at least one solution.

Proof. Define

(4.3) s∗ = max
x∈[0,1]

f (x, 0, 0)

p (x)
.

By (4.2), there is x∗ ∈ [0, 1] such that

f (x, 0, 0)

p (x)
≤ s∗ =

f (x∗, 0, 0)

p (x∗)
< s1, ∀x ∈ [0, 1] .

For r given by (4.2), β(x) ≡ 0 is an upper solution of (1.1)-(1.2) for s = s∗ and, as

by (4.1) and (4.2),

(4.4) 0 > s1p (x)− f (x,−r, 0) ≥ sp(x)− f (x,−r, 0) ,

therefore α(x) = −r is a lower solution of (1.1)-(1.2) for every s ≤ s1. So by Theorem

3.2 there exists a solution for problem (1.1)-(1.2) for s = s∗.

Suppose that problem (1.1)-(1.2) has a solution uσ (x) for s = σ ≤ s1. So uσ (x)

is an upper solution of (1.1)-(1.2) for σ ≤ s ≤ s1.

Let R > 0 sufficiently large such that, for r given by (4.2),

(4.5) r ≤ R, max
x∈[0,1]

uσ (x) ≥ −R

As in (4.4), α (x) = −R is a lower solution of (1.1)-(1.2), for s such that s ≤ s1.

By (4.5) it is obtained that α (x) ≤ uσ(x), in [0, 1]. Therefore, by Theorem 3.2, there

is a solution to problem (1.1)-(1.2) for σ ≤ s ≤ s1.

Consider the set

S = {s ∈ R : (1.1)-(1.2) has a solution} .

For s∗ given by (4.3), s∗ ∈ S then S is a non-empty set. Let s0 = inf S. So, for s < s0,

problem (1.1)-(1.2) has no solution. By the definition of s0 and s0 ≤ s∗ < s1, thus,

(1.1)-(1.2) has a solution for s ∈ ]s0, s1] .

It is pointed out that if s0 = −∞ then, every problem (1.1)-(1.2) has a solution

for s ≤ s1.
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5. Examples

In this section we will consider a couple of examples that illustrate conditions

(H1) to (H3) and how they relate with previous theorems.

Example 5.1. Let us consider, for x ∈ [0, 1] , the problem given by the equation

(5.1) u′′ (x) + arctan
(
u (x)2) + (u′ (x))

2
3 = sp (x)

along with the functional boundary conditions

(5.2)
max
x∈[0,1]

u (x) + k1u (0) = 0

max
x∈[0,1]

∫ x

0
u (s) ds + k2u (1) = 0

.

The functions

α (x) = −x− 1

and

β (x) = x + 1

are, respectively, lower and upper solutions to the problem (5.1)-(5.2), for k1 ≤ −2,

k2 ≤ −3
2

and for

(5.3)
1 + arctan 1

max
x∈[0,1]

p (x)
≤ s ≤ 1 + arctan 1

min
x∈[0,1]

p (x)
.

Given

f (x, y0, y1) = arctan (y2
0) + (y1)

2
3

L0 (y0, y1, y2) = max
x∈[0,1]

y0 (x) + k1y1

L1 (y0, y1, y2) = max
x∈[0,1]

∫ x

0
y0 (s) ds + k2y1

,

function f verifies conditions (2.1) and (2.2) in

E =
{
(x, y0, y1) ∈ [0, 1]× R2 : −x− 1 ≤ y0 ≤ x + 1

}
,

therefore by Theorem 3.2 there is at least a solution u (x) of the problem (5.1)-(5.2),

satisfying

−x− 1 ≤ u (x) ≤ x + 1, ∀x ∈ [0, 1] .

Remark that from (5.3) this solution is not the trivial one.

To obtain existence and nonexistence information for the problem (5.1)-(5.2) ex-

tra conditions were required: to apply Theorem 4.1 stronger conditions were imposed

both on the function f and on the boundary conditions. In the previous example

the function presented does not verify (4.1) and the boundary conditions (5.2) do

not verify condition (H3). A new example, with a suitable function f and boundary

conditions is presented in the next example to illustrate Theorem 4.1.
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Example 5.2. Let us consider, for x ∈ [0, 1] , the problem given by the equation

(5.4) u′′ (x)− u (x)3 + (u′ (x) + 1)
2
3 = sp (x)

along with the functional boundary conditions

(5.5)
−u (0)3 + u′ (0) = 0

δu (1)− u′ (1) = 0.

The functions

α (x) = −x− 1

and

β (x) = x + 1

are, respectively, lower and upper solutions to the problem (5.4)-(5.5), for δ ≤ 0 and

for
−1 + 2

2
3

max
x∈[0,1]

p (x)
≤ s ≤ 8

min
x∈[0,1]

p (x)
.

Given
f (x, y0, y1) = −y3

0 + (y1 + 1)
2
3

L0 (y0, y1, y2) = − (y1)
3 + y2

L1 (y0, y1, y2) = δy1 − y2

,

function f verifies conditions (2.1) and (2.2) in

E =
{
(x, y0, y1) ∈ [0, 1]× R2 : −x− 1 ≤ y0 ≤ x + 1

}
.

With
1

max
x∈[0,1]

p (x)
< s1 <

r3 + 1

min
x∈[0,1]

p (x)
,

boundary conditions (5.5) satisfy condition (H3), therefore by Theorem 4.1 there is

s0 < s1 such that:

• for s < s0, the problem (5.4)-(5.5)has no solution

• for s0 < s ≤ s1, the problem (5.4)-(5.5)has at least one solution.
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